Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem J 2003 Apr 01;371(Pt 1):151-64

Date

01/14/2003

Pubmed ID

12523938

Pubmed Central ID

PMC1223270

DOI

10.1042/BJ20021525

Scopus ID

2-s2.0-0037394420 (requires institutional sign-in at Scopus site)   115 Citations

Abstract

1-Methyl-4-phenylpyridinium (MPP(+)) is a neurotoxin used in cellular models of Parkinson's Disease. Although intracellular iron plays a crucial role in MPP(+)-induced apoptosis, the molecular signalling mechanisms linking iron, reactive oxygen species (ROS) and apoptosis are still unknown. We investigated these aspects using cerebellar granule neurons (CGNs) and human SH-SY5Y neuroblastoma cells. MPP(+) enhanced caspase 3 activity after 24 h with significant increases as early as 12 h after treatment of cells. Pre-treatment of CGNs and neuroblastoma cells with the metalloporphyrin antioxidant enzyme mimic, Fe(III)tetrakis(4-benzoic acid)porphyrin (FeTBAP), completely prevented the MPP(+)-induced caspase 3 activity as did overexpression of glutathione peroxidase (GPx1) and pre-treatment with a lipophilic, cell-permeable iron chelator [N, N '-bis-(2-hydroxybenzyl)ethylenediamine-N, N '-diacetic acid, HBED]. MPP(+) treatment increased the number of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labelling)-positive cells which was completely blocked by pre-treatment with FeTBAP. MPP(+) treatment significantly decreased the aconitase and mitochondrial complex I activities; pre-treatment with FeTBAP, HBED and GPx1 overexpression reversed this effect. MPP(+) treatment increased the intracellular oxidative stress by 2-3-fold, as determined by oxidation of dichlorodihydrofluorescein and dihydroethidium (hydroethidine). These effects were reversed by pre-treatment of cells with FeTBAP and HBED and by GPx1 overexpression. MPP(+)-treatment enhanced the cell-surface transferrin receptor (TfR) expression, suggesting a role for TfR-induced iron uptake in MPP(+) toxicity. Treatment of cells with anti-TfR antibody (IgA class) inhibited MPP(+)-induced caspase activation. Inhibition of nitric oxide synthase activity did not affect caspase 3 activity, apoptotic cell death or ROS generation by MPP(+). Overall, these results suggest that MPP(+)-induced cell death in CGNs and neuroblastoma cells proceeds via apoptosis and involves mitochondrial release of ROS and TfR-dependent iron.

Author List

Kalivendi SV, Kotamraju S, Cunningham S, Shang T, Hillard CJ, Kalyanaraman B

Authors

Cecilia J. Hillard PhD Associate Dean, Center Director, Professor in the Pharmacology and Toxicology department at Medical College of Wisconsin
Balaraman Kalyanaraman PhD Professor in the Biophysics department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

1-Methyl-4-phenylpyridinium
Aconitate Hydratase
Animals
Antioxidants
Apoptosis
Caspase 3
Caspases
Cells, Cultured
Deferoxamine
Edetic Acid
Female
Glutathione Peroxidase
Humans
Hydrogen Peroxide
Iron
Iron Chelating Agents
Male
Metalloporphyrins
Mitochondria
NADH, NADPH Oxidoreductases
Neurons
Oxidants
Oxidative Stress
Parkinson Disease
Reactive Oxygen Species
Receptors, Transferrin
Staining and Labeling
Transferrin