Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Protein kinase C translocation and Src protein tyrosine kinase activation mediate isoflurane-induced preconditioning in vivo: potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology 2004 Mar;100(3):532-9

Date

04/28/2004

Pubmed ID

15108965

DOI

10.1097/00000542-200403000-00011

Scopus ID

2-s2.0-1442357312 (requires institutional sign-in at Scopus site)   85 Citations

Abstract

BACKGROUND: The authors tested the hypotheses that protein kinase C (PKC)-specific isoform translocation and Src protein tyrosine kinase (PTK) activation play important roles in isoflurane-induced preconditioning in vivo.

METHODS: Rats (n = 125) instrumented for measurement of hemodynamics underwent 30 min of coronary artery occlusion followed by 2 h of reperfusion and received 0.9% saline (control); PKC inhibitors chelerythrine (5 mg/kg), rottlerin (0.3 mg/kg), or PKC-epsilonV1-2 peptide (1 mg/kg); PTK inhibitors lavendustin A (1 mg/kg) or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1; 1 mg/kg); mitochondrial adenosine triphosphate-sensitive potassium channel antagonist 5-hydroxydecanote (10 mg/kg); or reactive oxygen species scavenger N-acetylcysteine (150 mg/kg) in the absence and presence of a 30-min exposure to isoflurane (1.0 minimum alveolar concentration) in separate groups. Isoflurane was discontinued 15 min before coronary occlusion (memory period). Infarct size was determined using triphenyltetrazolium staining. Immunohistochemistry and confocal microscopic imaging were performed to examine PKC translocation in separate groups of rats.

RESULTS: Isoflurane significantly (P < 0.05) reduced infarct size (40 +/- 3% [n = 13]) as compared with control experiments (58 +/- 2% [n = 12]). Chelerythrine, rottlerin, PKC-epsilonV1-2 peptide, lavendustin A, PP1, 5-hydroxydecanote, and N-acetylcysteine abolished the anti-ischemic actions of isoflurane (58 +/- 2% [n = 8], 50 +/- 3% [n = 9], 53 +/- 2% [n = 9], 59 +/- 3% [n = 6], 57 +/- 3% [n = 7], 60 +/- 3% [n = 7], and 53 +/- 3% [n = 6], respectively). Isoflurane stimulated translocation of the delta and epsilon isoforms of PKC to sarcolemmal and mitochondrial membranes, respectively.

CONCLUSIONS: Protein kinase C-delta, PKC-epsilon, and Src PTK mediate isoflurane-induced preconditioning in the intact rat heart. Opening of mitochondrial adenosine triphosphate-sensitive potassium channels and generation of reactive oxygen species are upstream events of PKC activation in this signal transduction process.

Author List

Ludwig LM, Weihrauch D, Kersten JR, Pagel PS, Warltier DC

Author

Dorothee Weihrauch DVM, PhD Research Scientist II in the Anesthesiology department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Anesthetics, Inhalation
Animals
Coronary Circulation
Fluorescent Antibody Technique
Hemodynamics
Immunohistochemistry
Ischemic Preconditioning, Myocardial
Isoenzymes
Isoflurane
Male
Membrane Proteins
Myocardial Infarction
Myocardial Reperfusion Injury
Potassium Channels
Protein Kinase C
Protein Transport
Rats
Rats, Wistar
Reactive Oxygen Species
src-Family Kinases