Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Genetic and Nongenetic Factors Associated with Protein Abundance of Flavin-Containing Monooxygenase 3 in Human Liver. J Pharmacol Exp Ther 2017 Nov;363(2):265-274

Date

08/19/2017

Pubmed ID

28819071

Pubmed Central ID

PMC5697103

DOI

10.1124/jpet.117.243113

Scopus ID

2-s2.0-85032818206 (requires institutional sign-in at Scopus site)   41 Citations

Abstract

Hepatic flavin-containing mono-oxygenase 3 (FMO3) metabolizes a broad array of nucleophilic heteroatom (e.g., N or S)-containing xenobiotics (e.g., amphetamine, sulindac, benzydamine, ranitidine, tamoxifen, nicotine, and ethionamide), as well as endogenous compounds (e.g., catecholamine and trimethylamine). To predict the effect of genetic and nongenetic factors on the hepatic metabolism of FMO3 substrates, we quantified FMO3 protein abundance in human liver microsomes (HLMs; n = 445) by liquid chromatography-tandem mass chromatography proteomics. Genotyping/gene resequencing, mRNA expression, and functional activity (with benzydamine as probe substrate) of FMO3 were also evaluated. FMO3 abundance increased 2.2-fold (13.0 ± 11.4 pmol/mg protein vs. 28.0 ± 11.8 pmol/mg protein) from neonates to adults. After 6 years of age, no significant difference in FMO3 abundance was found between children and adults. Female donors exhibited modestly higher mRNA fragments per kilobase per million reads values (139.9 ± 76.9 vs. 105.1 ± 73.1; P < 0.001) and protein FMO3 abundance (26.7 ± 12.0 pmol/mg protein vs. 24.1 ± 12.1 pmol/mg protein; P < 0.05) compared with males. Six single nucleotide polymorphisms (SNPs), including rs2064074, rs28363536, rs2266782 (E158K), rs909530 (N285N), rs2266780 (E308G), and rs909531, were associated with significantly decreased protein abundance. FMO3 abundance in individuals homozygous and heterozygous for haplotype 3 (H3), representing variant alleles for all these SNPs (except rs2066534), were 50.8% (P < 0.001) and 79.5% (P < 0.01), respectively, of those with the reference homozygous haplotype (H1, representing wild-type). In summary, FMO3 protein abundance is significantly associated with age, gender, and genotype. These data are important in predicting FMO3-mediated heteroatom-oxidation of xenobiotics and endogenous biomolecules in the human liver.

Author List

Xu M, Bhatt DK, Yeung CK, Claw KG, Chaudhry AS, Gaedigk A, Pearce RE, Broeckel U, Gaedigk R, Nickerson DA, Schuetz E, Rettie AE, Leeder JS, Thummel KE, Prasad B

Author

Ulrich Broeckel MD Chief, Center Associate Director, Professor in the Pediatrics department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Adolescent
Adult
Aged
Aged, 80 and over
Aging
Child
Child, Preschool
Cohort Studies
Female
Genotype
Humans
Infant
Infant, Newborn
Liver
Male
Middle Aged
Oxygenases
RNA, Messenger
Sex Characteristics
Young Adult