Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Publications indexed to the term Potassium Channels, Inwardly Rectifying

FacultyTitle
1Kir7.1 knockdown and inhibition alter renal electrolyte handling but not the development of hypertension in Dahl salt-sensitive rats. (Zietara A, Palygin O, Levchenko V, Dissanayake LV, Klemens CA, Geurts A, Denton JS, Staruschenko A) Am J Physiol Renal Physiol 2023 Aug 01;325(2):F177-F187    
1VU6036720: The First Potent and Selective In Vitro Inhibitor of Heteromeric Kir4.1/5.1 Inward Rectifier Potassium Channels. (McClenahan SJ, Kent CN, Kharade SV, Isaeva E, Williams JC, Han C, Terker A, Gresham R 3rd, Lazarenko RM, Days EL, Romaine IM, Bauer JA, Boutaud O, Sulikowski GA, Harris R, Weaver CD, Staruschenko A, Lindsley CW, Denton JS) Mol Pharmacol 2022 May;101(5):357-370       8 Citations
1Crosstalk between epithelial sodium channels (ENaC) and basolateral potassium channels (Kir 4.1/Kir 5.1) in the cortical collecting duct. (Isaeva E, Bohovyk R, Fedoriuk M, Shalygin A, Klemens CA, Zietara A, Levchenko V, Denton JS, Staruschenko A, Palygin O) Br J Pharmacol 2022 Jun;179(12):2953-2968       6 Citations
1Role of collecting duct principal cell NOS1β in sodium and potassium homeostasis. (Hyndman KA, Isaeva E, Palygin O, Mendoza LD, Rodan AR, Staruschenko A, Pollock JS) Physiol Rep 2021 Oct;9(20):e15080       1 Citation
3Kcnj16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat. (Manis AD, Palygin O, Isaeva E, Levchenko V, LaViolette PS, Pavlov TS, Hodges MR, Staruschenko A) JCI Insight 2021 Jan 11;6(1)       14 Citations
1Expression, localization, and functional properties of inwardly rectifying K+ channels in the kidney. (Manis AD, Hodges MR, Staruschenko A, Palygin O) Am J Physiol Renal Physiol 2020 Feb 01;318(2):F332-F337       21 Citations
1Relationship between the renin-angiotensin-aldosterone system and renal Kir5.1 channels. (Manis AD, Palygin O, Khedr S, Levchenko V, Hodges MR, Staruschenko A) Clin Sci (Lond) 2019 Dec 20;133(24):2449-2461       11 Citations
1Gene Augmentation and Readthrough Rescue Channelopathy in an iPSC-RPE Model of Congenital Blindness. (Shahi PK, Hermans D, Sinha D, Brar S, Moulton H, Stulo S, Borys KD, Capowski E, Pillers DM, Gamm DM, Pattnaik BR) Am J Hum Genet 2019 Feb 07;104(2):310-318       24 Citations
2Genetic mutation of Kcnj16 identifies Kir5.1-containing channels as key regulators of acute and chronic pH homeostasis. (Puissant MM, Muere C, Levchenko V, Manis AD, Martino P, Forster HV, Palygin O, Staruschenko A, Hodges MR) FASEB J 2019 Apr;33(4):5067-5075       17 Citations
2Effects of regular exercise on ventricular myocyte biomechanics and KATP channel function. (Wang X, Fitts RH) Am J Physiol Heart Circ Physiol 2018 Oct 01;315(4):H885-H896       8 Citations
2Essential role of Kir5.1 channels in renal salt handling and blood pressure control. (Palygin O, Levchenko V, Ilatovskaya DV, Pavlov TS, Pochynyuk OM, Jacob HJ, Geurts AM, Hodges MR, Staruschenko A) JCI Insight 2017 Sep 21;2(18)       71 Citations
1A Novel KCNJ13 Nonsense Mutation and Loss of Kir7.1 Channel Function Causes Leber Congenital Amaurosis (LCA16). (Pattnaik BR, Shahi PK, Marino MJ, Liu X, York N, Brar S, Chiang J, Pillers DA, Traboulsi EI) Hum Mutat 2015 Jul;36(7):720-7       40 Citations
1Preconditioning by isoflurane elicits mitochondrial protective mechanisms independent of sarcolemmal KATP channel in mouse cardiomyocytes. (Muravyeva M, Sedlic F, Dolan N, Bosnjak ZJ, Stadnicka A) J Cardiovasc Pharmacol 2013 May;61(5):369-77       5 Citations
1KATP channel subunits in rat dorsal root ganglia: alterations by painful axotomy. (Zoga V, Kawano T, Liang MY, Bienengraeber M, Weihrauch D, McCallum B, Gemes G, Hogan Q, Sarantopoulos C) Mol Pain 2010 Jan 26;6:6       65 Citations
2ATP-sensitive potassium currents in rat primary afferent neurons: biophysical, pharmacological properties, and alterations by painful nerve injury. (Kawano T, Zoga V, McCallum JB, Wu HE, Gemes G, Liang MY, Abram S, Kwok WM, Hogan QH, Sarantopoulos CD) Neuroscience 2009 Aug 18;162(2):431-43       48 Citations
1Heterogeneity of Kir4.1 channel expression in glia revealed by mouse transgenesis. (Tang X, Taniguchi K, Kofuji P) Glia 2009 Dec;57(16):1706-15       57 Citations
2Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. (Kawano T, Zoga V, Kimura M, Liang MY, Wu HE, Gemes G, McCallum JB, Kwok WM, Hogan QH, Sarantopoulos CD) Mol Pain 2009 Mar 14;5:12       105 Citations
1Potassium channel gene expression in the rat cochlear nucleus. (Friedland DR, Eernisse R, Popper P) Hear Res 2007 Jun;228(1-2):31-43       16 Citations
1Cardioprotection by volatile anesthetics: new applications for old drugs? (Pratt PF Jr, Wang C, Weihrauch D, Bienengraeber MW, Kersten JR, Pagel PS, Warltier DC) Curr Opin Anaesthesiol 2006 Aug;19(4):397-403       31 Citations
1Molecular and immunohistochemical analyses of the focal form of congenital hyperinsulinism. (Suchi M, MacMullen CM, Thornton PS, Adzick NS, Ganguly A, Ruchelli ED, Stanley CA) Mod Pathol 2006 Jan;19(1):122-9       64 Citations
2Improved mitochondrial bioenergetics by anesthetic preconditioning during and after 2 hours of 27 degrees C ischemia in isolated hearts. (An J, Camara AK, Riess ML, Rhodes SS, Varadarajan SG, Stowe DF) J Cardiovasc Pharmacol 2005 Sep;46(3):280-7       14 Citations
2Protein kinase C-epsilon primes the cardiac sarcolemmal adenosine triphosphate-sensitive potassium channel to modulation by isoflurane. (Aizawa K, Turner LA, Weihrauch D, Bosnjak ZJ, Kwok WM) Anesthesiology 2004 Aug;101(2):381-9       36 Citations
1Oxidative stress and adaptation of the infant heart to hypoxia and ischemia. (Baker JE) Antioxid Redox Signal 2004 Apr;6(2):423-9       37 Citations
1Cardiac preconditioning by volatile anesthetic agents: a defining role for altered mitochondrial bioenergetics. (Stowe DF, Kevin LG) Antioxid Redox Signal 2004 Apr;6(2):439-48       67 Citations
1Preoperative evaluation of infants with focal or diffuse congenital hyperinsulinism by intravenous acute insulin response tests and selective pancreatic arterial calcium stimulation. (Stanley CA, Thornton PS, Ganguly A, MacMullen C, Underwood P, Bhatia P, Steinkrauss L, Wanner L, Kaye R, Ruchelli E, Suchi M, Adzick NS) J Clin Endocrinol Metab 2004 Jan;89(1):288-96       107 Citations
1Histopathology of congenital hyperinsulinism: retrospective study with genotype correlations. (Suchi M, MacMullen C, Thornton PS, Ganguly A, Stanley CA, Ruchelli ED) Pediatr Dev Pathol 2003;6(4):322-33       68 Citations
1Intracellular mechanism of mitochondrial adenosine triphosphate-sensitive potassium channel activation with isoflurane. (Nakae Y, Kohro S, Hogan QH, Bosnjak ZJ) Anesth Analg 2003 Oct;97(4):1025-1032       22 Citations
1ATP-sensitive potassium channels in rat primary afferent neurons: the effect of neuropathic injury and gabapentin. (Sarantopoulos C, McCallum B, Sapunar D, Kwok WM, Hogan Q) Neurosci Lett 2003 Jun 12;343(3):185-9       39 Citations
2Sevoflurane exposure generates superoxide but leads to decreased superoxide during ischemia and reperfusion in isolated hearts. (Kevin LG, Novalija E, Riess ML, Camara AKS, Rhodes SS, Stowe DF) Anesth Analg 2003 Apr;96(4):949-955       114 Citations
3Preconditioning with sevoflurane reduces changes in nicotinamide adenine dinucleotide during ischemia-reperfusion in isolated hearts: reversal by 5-hydroxydecanoic acid. (Riess ML, Novalija E, Camara AK, Eells JT, Chen Q, Stowe DF) Anesthesiology 2003 Feb;98(2):387-95       47 Citations
1Isoflurane sensitizes the cardiac sarcolemmal adenosine triphosphate-sensitive potassium channel to pinacidil. (Gassmayr S, Stadnicka A, Suzuki A, Kwok WM, Bosnjak ZJ) Anesthesiology 2003 Jan;98(1):114-20       18 Citations
2Sevoflurane preconditioning before moderate hypothermic ischemia protects against cytosolic [Ca(2+)] loading and myocardial damage in part via mitochondrial K(ATP) channels. (Chen Q, Camara AK, An J, Novalija E, Riess ML, Stowe DF) Anesthesiology 2002 Oct;97(4):912-20       26 Citations
1Anesthetic effects on mitochondrial ATP-sensitive K channel. (Kohro S, Hogan QH, Nakae Y, Yamakage M, Bosnjak ZJ) Anesthesiology 2001 Dec;95(6):1435-340       114 Citations
1Volatile anaesthetics restore bradykinin and serotonin-induced coronary vasodilation after blocking nitric oxide synthase: lack of anaesthetic effects on KATP channels and prostaglandin pathways. (Stowe DF, Heisner JS, Chung WW, Fujita S) Eur J Anaesthesiol 2001 Apr;18(4):219-30       5 Citations
1Analysis of single K(ATP) channels in mammalian dentate gyrus granule cells. (Pelletier MR, Pahapill PA, Pennefather PS, Carlen PL) J Neurophysiol 2000 Nov;84(5):2291-301       22 Citations
1Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes. (Koster JC, Marshall BA, Ensor N, Corbett JA, Nichols CG) Cell 2000 Mar 17;100(6):645-54       257 Citations
2Xenon does not alter cardiac function or major cation currents in isolated guinea pig hearts or myocytes. (Stowe DF, Rehmert GC, Kwok WM, Weigt HU, Georgieff M, Bosnjak ZJ) Anesthesiology 2000 Feb;92(2):516-22       71 Citations
1Terikalant, an inward-rectifier potassium channel blocker, does not abolish the cardioprotection induced by ischemic preconditioning in the rat. (Schultz JE, Kwok WM, Hsu AK, Gross GJ) J Mol Cell Cardiol 1998 Sep;30(9):1817-25       7 Citations
1Effects of sevoflurane on inward rectifier K+ current in guinea pig ventricular cardiomyocytes. (Stadnicka A, Bosnjak ZJ, Kampine JP, Kwok WM) Am J Physiol 1997 Jul;273(1 Pt 2):H324-32       26 Citations