Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Isobaric Labeling Strategy Utilizing 4-Plex N,N-Dimethyl Leucine (DiLeu) Tags Reveals Proteomic Changes Induced by Chemotherapy in Cerebrospinal Fluid of Children with B-Cell Acute Lymphoblastic Leukemia. J Proteome Res 2020 Jul 02;19(7):2606-2616



Pubmed ID


Pubmed Central ID




Scopus ID

2-s2.0-85087529506   5 Citations


The use of mass spectrometry for protein identification and quantification in cerebrospinal fluid (CSF) is at the forefront of research efforts to identify and explore biomarkers for the early diagnosis and prognosis of neurologic disorders. Here we implemented a 4-plex N,N-dimethyl leucine (DiLeu) isobaric labeling strategy in a longitudinal study aiming to investigate protein dynamics in children with B-cell acute lymphoblastic leukemia (B-cell ALL) undergoing chemotherapy. The temporal profile of CSF proteome during chemotherapy treatment at weeks 5, 10-14, and 24-28 highlighted many differentially expressed proteins, such as neural cell adhesion molecule, neuronal growth regulator 1, and secretogranin-3, all of which play important roles in neurodegenerative diseases. A total of 63 proteins were significantly altered across all of the time points investigated. The most over-represented biological processes from gene ontology analysis included platelet degranulation, complement activation, cell adhesion, fibrinolysis, neuron projection, regeneration, and regulation of neuron death. We expect that results from this and future studies will provide a means to monitor neurotoxicity and develop strategies to prevent central nervous system injury in response to chemotherapy in children.

Author List

Yu Q, Zhong X, Chen B, Feng Y, Ma M, Diamond CA, Voeller JS, Kim M, DeSantes KB, Capitini CM, Patel NJ, Hoover-Regan ML, Burke MJ, Janko K, Puccetti DM, Ikonomidou C, Li L


Michael James Burke MD Professor in the Pediatrics department at Medical College of Wisconsin

MESH terms used to index this publication - Major topics in bold

Longitudinal Studies
Precursor Cell Lymphoblastic Leukemia-Lymphoma
Tandem Mass Spectrometry