Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Cystathione β-synthase regulates HIF-1α stability through persulfidation of PHD2. Sci Adv 2020 07;6(27)

Date

09/17/2020

Pubmed ID

32937467

Pubmed Central ID

PMC7458453

DOI

10.1126/sciadv.aaz8534

Abstract

The stringent expression of the hypoxia inducible factor-1α (HIF-1α) is critical to a variety of pathophysiological conditions. We reveal that, in normoxia, enzymatic action of cystathionine β-synthase (CBS) produces H2S, which persulfidates prolyl hydroxylase 2 (PHD2) at residues Cys21 and Cys33 (zinc finger motif), augmenting prolyl hydroxylase activity. Depleting endogenous H2S either by hypoxia or by inhibiting CBS via chemical or genetic means reduces persulfidation of PHD2 and inhibits activity, preventing hydroxylation of HIF-1α, resulting in stabilization. Our in vitro findings are further supported by the depletion of CBS in the zebrafish model that exhibits axis defects and abnormal intersegmental vessels. Exogenous H2S supplementation rescues both in vitro and in vivo phenotypes. We have identified the persulfidated residues and defined their functional significance in regulating the activity of PHD2 via point mutations. Thus, the CBS/H2S/PHD2 axis may provide therapeutic opportunities for pathologies associated with HIF-1α dysregulation in chronic diseases.

Author List

Dey A, Prabhudesai S, Zhang Y, Rao G, Thirugnanam K, Hossen MN, Dwivedi SKD, Ramchandran R, Mukherjee P, Bhattacharya R

Author

Ramani Ramchandran PhD Professor in the Pediatrics department at Medical College of Wisconsin




jenkins-FCD Prod-484 8aa07fc50b7f6d102f3dda2f4c7056ff84294d1d