Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Formation of a noncovalent serpin-proteinase complex involves no conformational change in the serpin. Use of 1H-15N HSQC NMR as a sensitive nonperturbing monitor of conformation. Biochemistry 2000 Oct 03;39(39):11884-92

Date

09/29/2000

Pubmed ID

11009600

DOI

10.1021/bi001152+

Scopus ID

2-s2.0-0034601827 (requires institutional sign-in at Scopus site)   35 Citations

Abstract

A structural understanding of the nature and scope of serpin inhibition mechanisms has been limited by the inability so far to crystallize any serpin-proteinase complex. We describe here the application of [(1)H-(15)N]-HSQC NMR on uniformly and residue-selectively (15)N-labeled serpin alpha(1)-proteinase inhibitor (Pittsburgh variant with stabilizing mutations) to provide a nonperturbing and exquisitely sensitive means of probing the conformation of the serpin alone and in a noncovalent complex with inactive, serine 195-modified, bovine trypsin. The latter should be a good model both for the few examples of reversible serpin-proteinase complexes and for the initial Michaelis-like complex formed en route to irreversible covalent inhibition. Cleavage of the reactive center loop, with subsequent insertion into beta-sheet A, caused dramatic perturbation of most of the NMR cross-peaks. This was true for both the uniformly labeled and alanine-specifically labeled samples. The spectra of uniformly or leucine- or alanine-specifically labeled alpha(1)-proteinase inhibitor in noncovalent complex with unlabeled inactive trypsin gave almost no detectable chemical shift changes of cross-peaks, but some general increase in line width. Residue-specific assignments of the four alanines in the reactive center loop, at P12, P11, P9, and P4, allowed specific examination of the behavior of the reactive center loop. All four alanines showed higher mobility than the body of the serpin, consistent with a flexible reactive center loop, which remained flexible even in the noncovalent complex with proteinase. The three alanines near the hinge point for insertion showed almost no chemical shift perturbation upon noncovalent complex formation, while the alanine at P4 was perturbed, presumably by interaction with the active site of bound trypsin. Reporters from both the body of the serpin and the reactive center loop therefore indicate that noncovalent complex formation involves no conformational change in the body of the serpin and only minor perturbation of the reactive center loop in the region which contacts proteinase. Thus, despite the large size of serpin and serpin-proteinase complex, 45 and 69 kDa respectively, NMR provides a very sensitive means of probing serpin conformation and mobility, which should be applicable both to noncovalent and to covalent complexes with a range of different proteinases, and probably to other serpins.

Author List

Peterson FC, Gordon NC, Gettins PG

Author

Francis C. Peterson PhD Professor in the Biochemistry department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Alanine
Amino Acid Substitution
Animals
Binding Sites
Cattle
Humans
Hydrolysis
Leucine
Macromolecular Substances
Mutagenesis, Site-Directed
Nitrogen Isotopes
Nuclear Magnetic Resonance, Biomolecular
Protein Conformation
Protons
Trypsin
alpha 1-Antitrypsin