Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

(2-Aminopropyl)benzo[β]thiophenes (APBTs) are novel monoamine transporter ligands that lack stimulant effects but display psychedelic-like activity in mice. Neuropsychopharmacology 2022 Mar;47(4):914-923

Date

11/10/2021

Pubmed ID

34750565

Pubmed Central ID

PMC8882185

DOI

10.1038/s41386-021-01221-0

Scopus ID

2-s2.0-85118628713 (requires institutional sign-in at Scopus site)   9 Citations

Abstract

Derivatives of (2-aminopropyl)indole (API) and (2-aminopropyl)benzofuran (APB) are new psychoactive substances which produce stimulant effects in vivo. (2-Aminopropyl)benzo[β]thiophene (APBT) is a novel sulfur-based analog of API and APB that has not been pharmacologically characterized. In the current study, we assessed the pharmacological effects of six APBT positional isomers in vitro, and three of these isomers (3-APBT, 5-APBT, and 6-APBT) were subjected to further investigations in vivo. Uptake inhibition and efflux assays in human transporter-transfected HEK293 cells and in rat brain synaptosomes revealed that APBTs inhibit monoamine reuptake and induce transporter-mediated substrate release. Despite being nonselective transporter releasers like MDMA, the APBT compounds failed to produce locomotor stimulation in C57BL/6J mice. Interestingly, 3-APBT, 5-APBT, and 6-APBT were full agonists at 5-HT2 receptor subtypes as determined by calcium mobilization assays and induced the head-twitch response in C57BL/6J mice, suggesting psychedelic-like activity. Compared to their APB counterparts, ABPT compounds demonstrated that replacing the oxygen atom with sulfur results in enhanced releasing potency at the serotonin transporter and more potent and efficacious activity at 5-HT2 receptors, which fundamentally changed the in vitro and in vivo profile of APBT isomers in the present studies. Overall, our data suggest that APBT isomers may exhibit psychedelic and/or entactogenic effects in humans, with minimal psychomotor stimulation. Whether this unique pharmacological profile of APBT isomers translates into potential therapeutic potential, for instance as candidates for drug-assisted psychotherapy, warrants further investigation.

Author List

Rudin D, McCorvy JD, Glatfelter GC, Luethi D, Szöllősi D, Ljubišić T, Kavanagh PV, Dowling G, Holy M, Jaentsch K, Walther D, Brandt SD, Stockner T, Baumann MH, Halberstadt AL, Sitte HH

Author

John McCorvy PhD Assistant Professor in the Cell Biology, Neurobiology and Anatomy department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Animals
HEK293 Cells
Hallucinogens
Humans
Ligands
Mice
Mice, Inbred C57BL
Rats
Thiophenes