Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Whole-exome sequencing of 14 389 individuals from the ESP and CHARGE consortia identifies novel rare variation associated with hemostatic factors. Hum Mol Genet 2022 Sep 10;31(18):3120-3132

Date

05/14/2022

Pubmed ID

35552711

Pubmed Central ID

PMC9476613

DOI

10.1093/hmg/ddac100

Scopus ID

2-s2.0-85138447819 (requires institutional sign-in at Scopus site)   4 Citations

Abstract

Plasma levels of fibrinogen, coagulation factors VII and VIII and von Willebrand factor (vWF) are four intermediate phenotypes that are heritable and have been associated with the risk of clinical thrombotic events. To identify rare and low-frequency variants associated with these hemostatic factors, we conducted whole-exome sequencing in 10 860 individuals of European ancestry (EA) and 3529 African Americans (AAs) from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and the National Heart, Lung and Blood Institute's Exome Sequencing Project. Gene-based tests demonstrated significant associations with rare variation (minor allele frequency < 5%) in fibrinogen gamma chain (FGG) (with fibrinogen, P = 9.1 × 10-13), coagulation factor VII (F7) (with factor VII, P = 1.3 × 10-72; seven novel variants) and VWF (with factor VIII and vWF; P = 3.2 × 10-14; one novel variant). These eight novel rare variant associations were independent of the known common variants at these loci and tended to have much larger effect sizes. In addition, one of the rare novel variants in F7 was significantly associated with an increased risk of venous thromboembolism in AAs (Ile200Ser; rs141219108; P = 4.2 × 10-5). After restricting gene-based analyses to only loss-of-function variants, a novel significant association was detected and replicated between factor VIII levels and a stop-gain mutation exclusive to AAs (rs3211938) in CD36 molecule (CD36). This variant has previously been linked to dyslipidemia but not with the levels of a hemostatic factor. These efforts represent the largest integration of whole-exome sequence data from two national projects to identify genetic variation associated with plasma hemostatic factors.

Author List

Pankratz N, Wei P, Brody JA, Chen MH, de Vries PS, Huffman JE, Stimson MR, Auer PL, Boerwinkle E, Cushman M, de Maat MPM, Folsom AR, Franco OH, Gibbs RA, Haagenson KK, Hofman A, Johnsen JM, Kovar CL, Kraaij R, McKnight B, Metcalf GA, Muzny D, Psaty BM, Tang W, Uitterlinden AG, van Rooij JGJ, Dehghan A, O'Donnell CJ, Reiner AP, Morrison AC, Smith NL

Author

Paul L. Auer PhD Professor in the Institute for Health and Equity department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Factor VII
Factor VIII
Fibrinogen
Hemostatics
Humans
Polymorphism, Single Nucleotide
von Willebrand Factor