T2* weighted Deconvolution of NMR Spectra: Application to 2D Homonuclear MAS Solid-State NMR of Membrane Proteins. Sci Rep 2019 Jun 03;9(1):8225
Date
06/05/2019Pubmed ID
31160739Pubmed Central ID
PMC6546711DOI
10.1038/s41598-019-44461-3Scopus ID
2-s2.0-85067190230 (requires institutional sign-in at Scopus site) 9 CitationsAbstract
2D homonuclear NMR spectroscopy is an essential technique to characterize small and large molecules, such as organic compounds, metabolites, and biomacromolecules at atomic resolution. However, for complex samples 2D homonuclear spectra display poor resolution, making spectral assignment very cumbersome. Here, we propose a new method that exploits the differential T2* relaxation times of individual resonances and resolves the 2D NMR peaks into pseudo-3D spectra, where time is the 3rd dimension. T2* weIghted DEconvolution or TIDE analyzes individual free induction decays (FIDs) and dissects them into sub-FIDs that are transformed into pseudo-3D spectra combining Fourier transformation and covariance NMR. TIDE achieves higher resolution and sensitivity for NMR spectra than classical covariance NMR reducing offset-dependent artifacts. We demonstrate the performance of TIDE for magic angle spinning (MAS) [13C,13C]-DARR NMR spectra of single- and multi-span membrane proteins embedded in lipid bilayers. Since TIDE is applicable to all type of homonuclear correlation experiments for liquid and solid samples, we anticipate that it will be a general method for processing NMR data of biomacromolecules, complex mixtures of metabolites as well as material samples.
Author List
V S M, Gopinath T, Wang S, Veglia GAuthor
Gopinath Tata PhD Assistant Professor in the Biophysics department at Medical College of WisconsinMESH terms used to index this publication - Major topics in bold
AlgorithmsMagnetic Resonance Spectroscopy
Membrane Proteins
Muscle Proteins
Proteolipids