Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Selection of optimal quantile protein biomarkers based on cell-level immunohistochemistry data. BMC Bioinformatics 2023 Jul 22;24(1):298



Pubmed ID


Pubmed Central ID




Scopus ID

2-s2.0-85165357031 (requires institutional sign-in at Scopus site)


BACKGROUND: Protein biomarkers of cancer progression and response to therapy are increasingly important for improving personalized medicine. Advanced quantitative pathology platforms enable measurement of protein expression in tissues at the single-cell level. However, this rich quantitative cell-by-cell biomarker information is most often not exploited. Instead, it is reduced to a single mean across the cells of interest or converted into a simple proportion of binary biomarker-positive or -negative cells.

RESULTS: We investigated the utility of retaining all quantitative information at the single-cell level by considering the values of the quantile function (inverse of the cumulative distribution function) estimated from a sample of cell signal intensity levels in a tumor tissue. An algorithm was developed for selecting optimal cutoffs for dichotomizing cell signal intensity distribution quantiles as predictors of continuous, categorical or survival outcomes. The proposed algorithm was used to select optimal quantile biomarkers of breast cancer progression based on cancer cells' cell signal intensity levels of nuclear protein Ki-67, Proliferating cell nuclear antigen, Programmed cell death 1 ligand 2, and Progesterone receptor. The performance of the resulting optimal quantile biomarkers was validated and compared to the standard cancer compartment mean signal intensity markers using an independent external validation cohort. For Ki-67, the optimal quantile biomarker was also compared to established biomarkers based on percentages of Ki67-positive cells. For proteins significantly associated with PFS in the external validation cohort, the optimal quantile biomarkers yielded either larger or similar effect size (hazard ratio for progression-free survival) as compared to cancer compartment mean signal intensity biomarkers.

CONCLUSION: The optimal quantile protein biomarkers yield generally improved prognostic value as compared to the standard protein expression markers. The proposed methodology has a broad application to single-cell data from genomics, transcriptomics, proteomics, or metabolomics studies at the single cell level.

Author List

Yi M, Zhan T, Peck AR, Hooke JA, Kovatich AJ, Shriver CD, Hu H, Sun Y, Rui H, Chervoneva I


Yunguang Sun MD, PhD Assistant Professor in the Pathology department at Medical College of Wisconsin

MESH terms used to index this publication - Major topics in bold

Biomarkers, Tumor
Breast Neoplasms
Ki-67 Antigen