Mechanism of oxidative C alpha-C beta cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. Stoichiometry and involvement of free radicals. J Biol Chem 1985 Jul 15;260(14):8348-53
Date
07/15/1985Pubmed ID
2989288Scopus ID
2-s2.0-0022253244 (requires institutional sign-in at Scopus site) 141 CitationsAbstract
The hemoprotein ligninase of Phanerochaete chrysosporium Burds. catalyzes the oxidative cleavage of lignin model dimers between C alpha and C beta of their propyl side chains. The model dimers hitherto used give multiple products and complex stoichiometries upon enzymatic oxidation. Here we present experiments with a new model dimer, 1-(3,4-dimethoxyphenyl)-2-phenylethanediol (dimethoxyhydrobenzoin, DMHB) which is quantitatively cleaved by ligninase in air to give benzaldehyde and veratraldehyde according to the stoichiometry: 2DMHB + O2----2PhCHO + 2Ph(OMe)2CHO. Catalytic amounts of H2O2 are required for this aerobic reaction. Under anaerobic conditions, ligninase uses H2O2 as the oxidant for cleavage: DMHB + H2O2----PhCHO + Ph(OMe)2CHO. Electron spin resonance experiments done in the presence of spin traps, 2-methyl-2-nitrosopropane or 5,5-dimethyl-1-pyrroline-N-oxide, show that C alpha-C beta cleavage yields alpha-hydroxybenzyl radicals as intermediate products. Under anaerobic conditions, these radicals react further to give the final aldehyde products. In air, O2 adds to the carbon-centered radicals, probably giving alpha-hydroxybenzylperoxyl radicals which fragment to yield superoxide, benzaldehyde, and veratraldehyde. These results lead us to propose a mechanism for C alpha-C beta cleavage in which attack by ligninase and H2O2 on the methoxylated ring of DMHB yields a cation radical, which then cleaves to give either benzaldehyde and an alpha-hydroxy(dimethoxybenzyl) radical or veratraldehyde and an alpha-hydroxybenzyl radical (cf. Kersten, P. J., Tien, M., Kalyanaraman, B., and Kirk, T.K. (1985) J. Biol. Chem. 260, 2609-2612; Snook, M. E., and Hamilton, G. A. (1974) J. Am. Chem. Soc. 96, 860-869). Similar mechanisms probably apply to the enzymatic C alpha-C beta cleavage of natural lignin.
Author List
Hammel KE, Tien M, Kalyanaraman B, Kirk TKAuthor
Balaraman Kalyanaraman PhD Professor in the Biophysics department at Medical College of WisconsinMESH terms used to index this publication - Major topics in bold
BasidiomycotaBenzoin
Chromatography, High Pressure Liquid
Electron Spin Resonance Spectroscopy
Free Radicals
Kinetics
Lignin
Macromolecular Substances
Oxygenases