An algorithm for the use of Medicare claims data to identify women with incident breast cancer. Health Serv Res 2004 Dec;39(6 Pt 1):1733-49
Date
11/10/2004Pubmed ID
15533184Pubmed Central ID
PMC1361095DOI
10.1111/j.1475-6773.2004.00315.xScopus ID
2-s2.0-10044233970 (requires institutional sign-in at Scopus site) 178 CitationsAbstract
OBJECTIVE: To develop and validate a clinically informed algorithm that uses solely Medicare claims to identify, with a high positive predictive value, incident breast cancer cases.
DATA SOURCE: Population-based Surveillance, Epidemiology, and End Results (SEER) Tumor Registry data linked to Medicare claims, and Medicare claims from a 5 percent random sample of beneficiaries in SEER areas.
STUDY DESIGN: An algorithm was developed using claims from 1995 breast cancer patients from the SEER-Medicare database, as well as 1995 claims from Medicare control subjects. The algorithm was validated on claims from breast cancer subjects and controls from 1994. The algorithm development process used both clinical insight and logistic regression methods.
DATA EXTRACTION: Training set: Claims from 7,700 SEER-Medicare breast cancer subjects diagnosed in 1995, and 124,884 controls. Validation set: Claims from 7,607 SEER-Medicare breast cancer subjects diagnosed in 1994, and 120,317 controls.
PRINCIPAL FINDINGS: A four-step prediction algorithm was developed and validated. It has a positive predictive value of 89 to 93 percent, and a sensitivity of 80 percent for identifying incident breast cancer. The sensitivity is 82-87 percent for stage I or II, and lower for other stages. The sensitivity is 82-83 percent for women who underwent either breast-conserving surgery or mastectomy, and is similar across geographic sites. A cohort identified with this algorithm will have 89-93 percent incident breast cancer cases, 1.5-6 percent cancer-free cases, and 4-5 percent prevalent breast cancer cases.
CONCLUSIONS: This algorithm has better performance characteristics than previously proposed algorithms. The ability to examine national patterns of breast cancer care using Medicare claims data would open new avenues for the assessment of quality of care.
Author List
Nattinger AB, Laud PW, Bajorunaite R, Sparapani RA, Freeman JLAuthors
Ruta Brazauskas PhD Associate Professor in the Data Science Institute department at Medical College of WisconsinPurushottam W. Laud PhD Adjunct Professor in the Data Science Institute department at Medical College of Wisconsin
Ann B. Nattinger MD, MPH Associate Provost, Professor in the Medicine department at Medical College of Wisconsin
Rodney Sparapani PhD Associate Professor in the Data Science Institute department at Medical College of Wisconsin
MESH terms used to index this publication - Major topics in bold
AgedAged, 80 and over
Algorithms
Breast Neoplasms
Female
Humans
Incidence
Insurance Claim Review
Logistic Models
Medicare
SEER Program
Sensitivity and Specificity
United States