Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Xenorhabdus antibiotics: a comparative analysis and potential utility for controlling mastitis caused by bacteria. J Appl Microbiol 2008 Mar;104(3):745-58

Date

11/03/2007

Pubmed ID

17976177

DOI

10.1111/j.1365-2672.2007.03613.x

Scopus ID

2-s2.0-39149108771 (requires institutional sign-in at Scopus site)   41 Citations

Abstract

AIMS: The role of antibiotics produced by bacterial symbionts of entomopathogenic nematodes is to suppress growth of microbes in the soil environment. These antibiotics are active against Gram-positive and Gram-negative bacteria, and were tested against mastitis isolates from dairy cows.

METHODS AND RESULTS: Two bioassays were adapted for Xenorhabdus antibiotics; an overlay method on agar plates, and serially diluted, cell-free, Xenorhabdus cultures. The antimicrobial activities of the liquid cultures of 13 strains from five Xenorhabdus species were further evaluated. Antimicrobial activities of the type strains of X. nematophila, X. budapestensis and X. szentirmaii were tested on mastitis isolates of Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae with both bioassays. A previously reported antibiotic from X. nematophila, nematophin, was synthesized in three steps from tryptamine and 4-methyl-2-oxovaleric acid sodium salt.

CONCLUSIONS: The antibiotics of all three Xenorhabdus strains were powerful in either bioassay, but the sensitivity of the isolates differed from each other. While Kl. pneumoniae was the least susceptible, Staph. aureus had the highest sensitivity to each Xenorhabdus strain. Xenorhabdus szentirmaii and X. budapestensis were more potent antibiotic producers than X. nematophila, and raceme nematophin was ineffective against all mastitis isolates.

SIGNIFICANCE AND IMPACT OF THE STUDY: These results indicate that Xenorhabdus antibiotics are effective against mastitis isolates and should be further evaluated for their potential in mastitis control or prevention.

Author List

Furgani G, Böszörményi E, Fodor A, Máthé-Fodor A, Forst S, Hogan JS, Katona Z, Klein MG, Stackebrandt E, Szentirmai A, Sztaricskai F, Wolf SL

Author

Steven Forst PhD Professor in the Biological Sciences department at University of Wisconsin - Milwaukee




MESH terms used to index this publication - Major topics in bold

Animals
Anti-Bacterial Agents
Cattle
Colony Count, Microbial
Escherichia coli
Female
Indoles
Klebsiella pneumoniae
Mastitis, Bovine
Microbial Sensitivity Tests
Soil Microbiology
Species Specificity
Staphylococcus aureus
Xenorhabdus