Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Microarray and real-time PCR analysis of adrenal gland gene expression in the 7-day-old rat: effects of hypoxia from birth. Physiol Genomics 2007 Apr 24;29(2):193-200

Date

01/11/2007

Pubmed ID

17213367

Pubmed Central ID

PMC1857286

DOI

10.1152/physiolgenomics.00245.2006

Scopus ID

2-s2.0-34247862061   16 Citations

Abstract

We hypothesize that changes in adrenal gene expression mediate the increased plasma corticosterone and steroidogenesis in rat pups exposed to hypoxia from birth. In the current study, rat pups (with their dams) were exposed to hypoxia from birth and compared with pups from normoxic dams fed ad libitum or pair fed to match the decreased maternal food intake that occurs during hypoxia. Microarray analysis was performed, followed by verification with real-time PCR. Furthermore, the expression of selected genes involved in adrenal function was analyzed by real-time PCR, regardless of microarray results. Hypoxia increased plasma ACTH and corticosterone, while food restriction had no effect. Microarray revealed that many of the genes affected by hypoxia encode proteins that require molecular oxygen (monooxygenases, oxidoreductases, and electron transport), whereas only a few genes known to be involved in adrenal steroidogenesis were affected. Interestingly, the expression of genes involved in mitochondrial function and intermediary metabolism was increased by hypoxia. Real-time PCR detected a small but significant increase in the expression of Cyp21a1 mRNA in the hypoxic adrenal. When decreased maternal food intake was controlled for, the effects of hypoxia were more pronounced, in that real-time PCR detected significant increases in the expression of Star (244%), Cyp21a1 (208%), and Ldlr (233%). The present study revealed that increased plasma corticosterone in rat pups was due to hypoxia per se, and not as a result of decreased food intake by the hypoxic dam. Furthermore, hypoxia induced changes in gene expression that account for more productive and efficient steroidogenesis.

Author List

Bruder ED, Lee JJ, Widmaier EP, Raff H

Author

Hershel Raff PhD Professor in the Medicine department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Adrenal Glands
Adrenocorticotropic Hormone
Animals
Corticosterone
Gene Expression
Hypoxia
Oligonucleotide Array Sequence Analysis
Rats
Reverse Transcriptase Polymerase Chain Reaction
Steroids
jenkins-FCD Prod-484 8aa07fc50b7f6d102f3dda2f4c7056ff84294d1d