Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Mechanical induction of dentin-like differentiation by adult mouse bone marrow stromal cells using compressive scaffolds. Stem Cell Res 2017 Oct;24:55-60

Date

08/26/2017

Pubmed ID

28841424

Pubmed Central ID

PMC5796538

DOI

10.1016/j.scr.2017.08.011

Scopus ID

2-s2.0-85027843418 (requires institutional sign-in at Scopus site)   15 Citations

Abstract

Tooth formation during embryogenesis is controlled through a complex interplay between mechanical and chemical cues. We have previously shown that physical cell compaction of dental mesenchyme cells during mesenchymal condensation is responsible for triggering odontogenic differentiation during embryogenesis, and that expression of Collagen VI stabilizes this induction. In addition, we have shown that synthetic polymer scaffolds that artificially induce cell compaction can induce embryonic mandible mesenchymal cells to initiate tooth differentiation both in vitro and in vivo. As embryonic cells would be difficult to use for regenerative medicine applications, here we explored whether compressive scaffolds coated with Collagen VI can be used to induce adult bone marrow stromal cells (BMSCs) to undergo an odontogenic lineage switch. These studies revealed that when mouse BMSCs are compressed using these scaffolds they increase expression of critical markers of tooth differentiation in vitro, including the key transcription factors Pax9 and Msx1. Implantation under the kidney capsule of contracting scaffolds bearing these cells in mice also resulted in local mineralization, calcification and production of dentin-like tissue. These findings show that these chemically-primed compressive scaffolds can be used to induce adult BMSCs to undergo a lineage switch and begin to form dentin-like tissue, thus raising the possibility of using adult BMSCs for future tooth regeneration applications.

Author List

Hashmi B, Mammoto T, Weaver J, Ferrante T, Jiang A, Jiang E, Feliz J, Ingber DE

Author

Tadanori Mammoto MD, PhD Associate Professor in the Pediatrics department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Aging
Animals
Cell Differentiation
Dentin
Mice
Microscopy, Fluorescence
RNA, Messenger
Stress, Mechanical
Tissue Scaffolds
Transcription Factors