Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Return of the lysergamides. Part IV: Analytical and pharmacological characterization of lysergic acid morpholide (LSM-775). Drug Test Anal 2018 Feb;10(2):310-322

Date

06/07/2017

Pubmed ID

28585392

Pubmed Central ID

PMC6230476

DOI

10.1002/dta.2222

Scopus ID

2-s2.0-85026419779 (requires institutional sign-in at Scopus site)   40 Citations

Abstract

Lysergic acid diethylamide (LSD) is perhaps one of the best-known psychoactive substances and many structural modifications of this prototypical lysergamide have been investigated. Several lysergamides were recently encountered as 'research chemicals' or new psychoactive substances (NPS). Although lysergic acid morpholide (LSM-775) appeared on the NPS market in 2013, there is disagreement in the literature regarding the potency and psychoactive properties of LSM-775 in humans. The present investigation attempts to address the gap of information that exists regarding the analytical profile and pharmacological effects of LSM-775. A powdered sample of LSM-775 was characterized by X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR), gas chromatography mass spectrometry (GC-MS), high mass accuracy electrospray MS/MS, high performance liquid chromatography (HPLC) diode array detection, HPLC quadrupole MS, and GC solid-state infrared analysis. Screening for receptor affinity and functional efficacy revealed that LSM-775 acts as a nonselective agonist at 5-HT1A and 5-HT2A receptors. Head twitch studies were conducted in C57BL/6J mice to determine whether LSM-775 activates 5-HT2A receptors and produces hallucinogen-like effects in vivo. LSM-775 did not induce the head twitch response unless 5-HT1A receptors were blocked by pretreatment with the antagonist WAY-100,635 (1 mg/kg, subcutaneous). These findings suggest that 5-HT1A activation by LSM-775 masks its ability to induce the head twitch response, which is potentially consistent with reports in the literature indicating that LSM-775 is only capable of producing weak LSD-like effects in humans.

Author List

Brandt SD, Kavanagh PV, Twamley B, Westphal F, Elliott SP, Wallach J, Stratford A, Klein LM, McCorvy JD, Nichols DE, Halberstadt AL

Author

John McCorvy PhD Assistant Professor in the Cell Biology, Neurobiology and Anatomy department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Animals
Hallucinogens
Humans
Lysergic Acid
Lysergic Acid Diethylamide
Mice
Piperazines
Pyridines
Receptor, Serotonin, 5-HT1A
Serotonin 5-HT1 Receptor Agonists
Serotonin 5-HT2 Receptor Agonists
Tandem Mass Spectrometry