Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Biophysics of cochlear implant/MRI interactions emphasizing bone biomechanical properties. Laryngoscope 2002 Oct;112(10):1720-5

Date

10/09/2002

Pubmed ID

12368603

DOI

10.1097/00005537-200210000-00002

Scopus ID

2-s2.0-0036789308 (requires institutional sign-in at Scopus site)   23 Citations

Abstract

OBJECTIVE/HYPOTHESIS: The forces exerted during a 1.5-Tesla MRI evaluation on the internal magnet of a cochlear implant (CI) raise concern about the safety for CI recipients. This study determines the magnitude of force required to fracture the floor of a CI receiver bed.

METHOD: Recessed CI beds were drilled to maximum uniform thinness into formalin-fixed and fresh-frozen human calvaria specimens. A Med-El stainless steel CI template mounted to the piston of an electrohydraulic testing device was used to fracture the floor of the implant beds. Force and displacement were measured as a function of time using a digital data acquisition system.

RESULTS: Mean force to first failure, displacement to first failure, and minimum thickness, respectively, were: group 1 (formalin-fixed, 0.3-0.4-mm thick [n = 22]), 34.08 N (8.21-59.64 N, standard deviation [SD] 15.41 N), 1.09 mm (0.40-2.16 mm, SD 0.51 mm), 0.36 mm (0.3-0.4 mm, SD 0.05 mm); group 2 (formalin-fixed, 0.5-0.9 mm thick [n = 21]), 52.82 N (20.28-135.53 N, SD 25.29 N), 1.08 mm (0.50-2.28 mm, SD 0.47 mm), 0.58 mm (0.5-0.9 mm, SD 0.12 mm); group 3 (fresh-frozen [n = 9]), 134.13 N (86.44-190.70 N, SD 34.92 N), 1.96 mm (1.47-2.46 mm, SD 0.35 mm), 0.42 mm (0.3-0.6 mm, SD 0.11 mm).

CONCLUSIONS: The mean magnitude of force required to fracture the floor of a CI bed is significantly greater than those that are generated when a Med-El Combi 40+, CII Bionic Ear CI, or Nucleus Contour CI is placed into a 1.5-Tesla MRI unit.

Author List

Sonnenburg RE, Wackym PA, Yoganandan N, Firszt JB, Prost RW, Pintar FA

Authors

Frank A. Pintar PhD Chair, Professor in the Biomedical Engineering department at Medical College of Wisconsin
Narayan Yoganandan PhD Professor in the Neurosurgery department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Adult
Aged
Aged, 80 and over
Biomechanical Phenomena
Cochlear Implantation
Cochlear Implants
Female
Fractures, Bone
Humans
In Vitro Techniques
Magnetic Resonance Imaging
Male
Skull