Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Torso side airbag out-of-position evaluation using stationary and dynamic occupants. Biomed Sci Instrum 2008;44:123-8

Date

12/20/2008

Pubmed ID

19096733

Pubmed Central ID

PMC2605088

Abstract

The risk of injury from torso side airbags in out-of-position (OOP) scenarios is assessed using stationary occupant conditions. Although stationary tests have been effective in frontal airbag assessments, their applicability to torso side airbags remains uncertain. Using the MADAYMO facet occupant model, thoracic OOP injury was evaluated using full-chest compression criteria (%C) and viscous criteria (VC) under stationary occupant conditions and occupant impact velocities of 6.0 m/s, 7.0 m/s, 8.0 m/s, and 9.0 m/s. During airbag deployment with a stationary occupant, peak %C = 21.8 % while peak VC = 0.86. At 6.0 m/s impact velocity, peak %C increased to 35.1 %; at 9.0 m/s impact velocity %C = 45.0 %. Similarly, peak VC increased from 1.19 at 6.0 m/s and to 1.96 at 9.0 m/s. These results demonstrated that thoracic injury metrics %C and VC increased in dynamic testing conditions. Therefore dynamic occupant tests may be required to effectively assess OOP thoracic injury risk.

Author List

Hallman JJ, Yoganandan N, Pintar FA

Authors

Frank A. Pintar PhD Chair, Professor in the Biomedical Engineering department at Medical College of Wisconsin
Narayan Yoganandan PhD Professor in the Neurosurgery department at Medical College of Wisconsin