Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Cyclooxygenase-2 rescues rat mesangial cells from apoptosis induced by adriamycin via upregulation of multidrug resistance protein 1 (P-glycoprotein). J Am Soc Nephrol 2006 Apr;17(4):977-85

Date

03/17/2006

Pubmed ID

16540558

DOI

10.1681/ASN.2005101076

Scopus ID

2-s2.0-33645465462 (requires institutional sign-in at Scopus site)   17 Citations

Abstract

Cyclooxygenase-2 (COX-2) is constitutively expressed in restricted subpopulations of kidney cells, where it presumably acts as an antiapoptotic factor. In conditions that are characterized by inflammation, COX-2 expression also has been described in glomerular mesangial cells (GMC), where COX-2 is not expressed constitutively. It was shown previously that adenovirus-mediated gene transfer of COX-2 into rat GMC led to increased expression and activity of multidrug resistance protein 1 (MDR-1), a membrane transporter that functions as an efflux pump for chemotherapeutic drugs, including Adriamycin (ADR). In ADR nephrotoxicity, a pathologic change in glomeruli could be partially explained by ADR-mediated changes in GMC. Here it is demonstrated that ADR (also known as doxorubicin; 1 microg/ml) induced apoptosis in 15.3 +/- 2.2% of GMC, whereas after adenovirus-mediated COX-2 expression, only 6.6 +/- 0.4% of ADR-treated cells underwent apoptosis. This protective effect was nullified by treatment with NS398, specific COX-2 inhibitor. ADR efflux is greater in COX-2-overexpressing cells, when compared with control, which is attributed to the increased MDR-1 expression. Addition of PSC833, the specific MDR-1 inhibitor, completely abolished the protective effect of COX-2 overexpression and increased the level of apoptosis in GMC that were exposed to ADR. These data suggest that COX-2 protects GMC from ADR-mediated apoptosis via transcriptional upregulation of MDR-1 and that induced COX-2 expression would lessen ADR nephrotoxicity.

Author List

Miller B, Patel VA, Sorokin A

Author

Andrey Sorokin PhD Professor in the Medicine department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Animals
Apoptosis
Cells, Cultured
Cyclooxygenase 2
Cyclosporins
Doxorubicin
Glomerular Mesangium
Rats
Up-Regulation