Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Longitudinal assessment of local and global functional connectivity following sports-related concussion. Brain Imaging Behav 2017 Feb;11(1):129-140 PMID: 26821253

Abstract

Growing evidence suggests that sports-related concussions (SRC) may lead to acute changes in intrinsic functional connectivity, although most studies to date have been cross-sectional in nature with relatively modest sample sizes. We longitudinally assessed changes in local and global resting state functional connectivity using metrics that do not require a priori seed or network selection (regional homogeneity; ReHo and global brain connectivity; GBC, respectively). A large sample of collegiate athletes (N = 43) was assessed approximately one day (1.74 days post-injury, N = 34), one week (8.44 days, N = 34), and one month post-concussion (32.47 days, N = 30). Healthy contact sport-athletes served as controls (N = 51). Concussed athletes showed improvement in mood symptoms at each time point (p's < 0.05), but had significantly higher mood scores than healthy athletes at every time point (p's < 0.05). In contrast, self-reported symptoms and cognitive deficits improved over time following concussion (p's < 0.001), returning to healthy levels by one week post-concussion. ReHo in sensorimotor, visual, and temporal cortices increased over time post-concussion, and was greatest at one month post-injury. Conversely, ReHo in the frontal cortex decreased over time following SRC, with the greatest decrease evident at one month post-concussion. Differences in ReHo relative to healthy athletes were primarily observed at one month post-concussion rather than the more acute time points. Contrary to our hypothesis, no significant cross-sectional or longitudinal differences in GBC were observed. These results are suggestive of a delayed onset of local connectivity changes following SRC.

Author List

Meier TB, Bellgowan PSF, Mayer AR

Author

Timothy B. Meier PhD Assistant Professor in the Neurosurgery department at Medical College of Wisconsin



View this publication's entry at the Pubmed website PMID: 26821253
jenkins-FCD Prod-153 3ca6710ea990189ceb85f4312e7298b5922ce1a6