Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

An IRF5 Decoy Peptide Reduces Myocardial Inflammation and Fibrosis and Improves Endothelial Cell Function in Tight-Skin Mice. PLoS One 2016;11(4):e0151999

Date

04/07/2016

Pubmed ID

27050551

Pubmed Central ID

PMC4822818

DOI

10.1371/journal.pone.0151999

Scopus ID

2-s2.0-84963665146 (requires institutional sign-in at Scopus site)   11 Citations

Abstract

Interferon regulatory factor 5 (IRF5) has been called a "master switch" for its ability to determine whether cells mount proinflammatory or anti-inflammatory responses. Accordingly, IRF5 should be an attractive target for therapeutic drug development. Here we report on the development of a novel decoy peptide inhibitor of IRF5 that decreases myocardial inflammation and improves vascular endothelial cell (EC) function in tight-skin (Tsk/+) mice. Biolayer interferometry studies showed the Kd of IRF5D for recombinant IRF5 to be 3.72 ± 0.74x10-6M. Increasing concentrations of IRF5D (0-100 μg/mL, 24h) had no significant effect on EC proliferation or apoptosis. Treatment of Tsk/+ mice with IRF5D (1mg/kg/d subcutaneously, 21d) reduced IRF5 and ICAM-1 expression and monocyte/macrophage and neutrophil counts in Tsk/+ hearts compared to expression in hearts from PBS-treated Tsk/+ mice (p<0.05). EC-dependent vasodilatation of facialis arteries isolated from PBS-treated Tsk/+ mice was reduced (~15%). IRF5D treatments (1mg/kg/d, 21d) improved vasodilatation in arteries isolated from Tsk/+ mice nearly 3-fold (~45%, p<0.05), representing nearly 83% of the vasodilatation in arteries isolated from C57Bl/6J mice (~55%). IRF5D (50μg/mL, 24h) reduced nuclear translocation of IRF5 in myocytes cultured on both Tsk/+ cardiac matrix and C57Bl/6J cardiac matrix (p<0.05). These data suggest that IRF5 plays a causal role in inflammation, fibrosis and impaired vascular EC function in Tsk/+ mice and that treatment with IRF5D effectively counters IRF5-dependent mechanisms of inflammation and fibrosis in the myocardium in these mice.

Author List

Weihrauch D, Krolikowski JG, Jones DW, Zaman T, Bamkole O, Struve J, Pillai S, Pagel PS, Lohr NL, Pritchard KA Jr

Author

Kirkwood A. Pritchard PhD Professor in the Surgery department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Animals
Cell Nucleus
Endothelium, Vascular
Fibrosis
Interferon Regulatory Factors
Mice
Mice, Inbred C57BL
Myocarditis
Peptides
Protein Conformation
Protein Transport