Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

High-Resolution Resting-State Functional Connectivity of the Extended Amygdala. Brain Connect 2019 10;9(8):627-637



Pubmed ID




Scopus ID

2-s2.0-85073585192   7 Citations


The extended amygdala has been implicated as a critical region in the neurocircuitry underlying anxiety. The circuitry of the extended amygdala, including the central (CeA) and basolateral (BLA) nuclei of the amygdala and the bed nucleus of the stria terminalis (BNST), has been well defined in nonhuman animals; however, much less is known about the roles and interactions of these structures in humans given their small size. Therefore, this study used high-resolution 7-Tesla magnetic resonance imaging to define, compare, and contrast functional connectivity (FC) of these structures in 57 neurologically healthy young adults. In addition, FC was investigated in relation to self-reported measures of anxiety and intolerance of uncertainty, a key feature of anxiety. Results of the FC analysis of each of the nuclei largely replicated previous work. Conjunction analyses showed that nuclei of the extended amygdala shared FC with hippocampal, cingulate, medial prefrontal, and subgenual cortices. Comparison of seed-to-voxel time series correlation maps demonstrated that compared with the BNST, the CeA and BLA were more strongly coupled with parahippocampal, temporal, fusiform, and occipital gyri. Relative to the CeA and BLA, the BNST was more strongly coupled with the anterior caudate and anterior cingulate cortex. Finally, trait anxiety and intolerance of uncertainty were not robustly related to FC of the extended amygdala at rest. Results of this study extend previous work to provide more clarity of the nuances of extended amygdala resting FC and its relationship with anxiety.

Author List

Weis CN, Huggins AA, Bennett KP, Parisi EA, Larson CL


Carissa N. Weis PhD Assistant Professor in the Institute for Health and Equity department at Medical College of Wisconsin

MESH terms used to index this publication - Major topics in bold

Magnetic Resonance Imaging
Neural Pathways
Young Adult