Structural basis for the hydrolytic dehalogenation of the fungicide chlorothalonil. J Biol Chem 2020 Jun 26;295(26):8668-8677
Date
05/03/2020Pubmed ID
32358058Pubmed Central ID
PMC7324493DOI
10.1074/jbc.RA120.013150Scopus ID
2-s2.0-85087253833 (requires institutional sign-in at Scopus site) 4 CitationsAbstract
Cleavage of aromatic carbon-chlorine bonds is critical for the degradation of toxic industrial compounds. Here, we solved the X-ray crystal structure of chlorothalonil dehalogenase (Chd) from Pseudomonas sp. CTN-3, with 15 of its N-terminal residues truncated (ChdT), using single-wavelength anomalous dispersion refined to 1.96 Å resolution. Chd has low sequence identity (<15%) compared with all other proteins whose structures are currently available, and to the best of our knowledge, we present the first structure of a Zn(II)-dependent aromatic dehalogenase that does not require a coenzyme. ChdT forms a "head-to-tail" homodimer, formed between two α-helices from each monomer, with three Zn(II)-binding sites, two of which occupy the active sites, whereas the third anchors a structural site at the homodimer interface. The catalytic Zn(II) ions are solvent-accessible via a large hydrophobic (8.5 × 17.8 Å) opening to bulk solvent and two hydrophilic branched channels. Each active-site Zn(II) ion resides in a distorted trigonal bipyramid geometry with His117, His257, Asp116, Asn216, and a water/hydroxide as ligands. A conserved His residue, His114, is hydrogen-bonded to the Zn(II)-bound water/hydroxide and likely functions as the general acid-base. We examined substrate binding by docking chlorothalonil (2,4,5,6-tetrachloroisophtalonitrile, TPN) into the hydrophobic channel and observed that the most energetically favorable pose includes a TPN orientation that coordinates to the active-site Zn(II) ions via a CN and that maximizes a π-π interaction with Trp227 On the basis of these results, along with previously reported kinetics data, we propose a refined catalytic mechanism for Chd-mediated TPN dehalogenation.
Author List
Catlin DS, Yang X, Bennett B, Holz RC, Liu DAuthor
Brian Bennett D.Phil. Professor and Chair in the Physics department at Marquette UniversityMESH terms used to index this publication - Major topics in bold
Bacterial ProteinsBiodegradation, Environmental
Catalytic Domain
Crystallography, X-Ray
Fungicides, Industrial
Halogenation
Hydrolases
Hydrolysis
Molecular Docking Simulation
Nitriles
Protein Conformation
Pseudomonas
Substrate Specificity