Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

NIR-II window tracking of hyperglycemia induced intracerebral hemorrhage in cerebral cavernous malformation deficient mice. Biomater Sci 2020 Sep 21;8(18):5133-5144

Date

08/22/2020

Pubmed ID

32821891

Pubmed Central ID

PMC9272591

DOI

10.1039/d0bm00873g

Scopus ID

2-s2.0-85091035332 (requires institutional sign-in at Scopus site)   10 Citations

Abstract

Second near infrared (NIR-II) window fluorescence imaging between 1000 and 1700 nm with reduced scattering and autofluorescence and deep tissue light penetration allows early and non-invasive determination of vascular pathologies. Here, we demonstrate in vivo NIR-II imaging techniques for tracking hyperglycaemia-induced Intracerebral Hemorrhage (ICH) and Blood Brain Barrier (BBB) hyperpermeability in Cerebral Cavernous Malformation (CCM) deficient mice (CCM1+/-). We synthesised PEGylated Ag2S quantum dots (QDs) with a bright fluorescent emission peak centred at 1135 nm under an 808 nm NIR light for dynamic imaging of cerebral vasculature in mice and determined the development of ICH and BBB impairment in hyperglycaemic CCM1+/- mice. In vivo optical imaging was conducted with micro-CT (including k-mean cluster analysis) as well as in vivo permeability assays using FITC-dextran perfusion and IgG staining, respectively. The increased BBB permeability in CCM1+/- mice was further demonstrated to be associated with a high-glucose-caused decrease of CCM1 expressions. This study validates that deep-penetrating NIR-II QDs can be used for the tracking of ICH and BBB hyperpermeability in transgenic mice models of cerebral vascular anomalies.

Author List

Parchur AK , Fang Z , Jagtap JM , Sharma G , Hansen C , Shafiee S , Hu W , Miao QR , Joshi A

Authors

Amit Joshi PhD Professor in the Biomedical Engineering department at Medical College of Wisconsin
Abdul Kareem Parchur Medical Physicist Assistant in the Radiation Oncology department at Medical College of Wisconsin
Shayan Shafiee Postdoctoral Researcher in the Biomedical Engineering department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Animals
Cerebral Hemorrhage
Hemangioma, Cavernous, Central Nervous System
Hyperglycemia
Mice
Optical Imaging
Quantum Dots