Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Characterization of diffusion MRI using the mean apparent propagator model in hemodialysis patients: A pilot study. Magn Reson Imaging 2023 Oct;102:69-78

Date

05/08/2023

Pubmed ID

37150269

Pubmed Central ID

PMC10524280

DOI

10.1016/j.mri.2023.04.007

Scopus ID

2-s2.0-85158005091 (requires institutional sign-in at Scopus site)   1 Citation

Abstract

To better understand documented cognitive decline in hemodialysis (HD) patients, diffusion MRI (dMRI) has been used to characterize brain anatomical deficits relative to controls. Studies to this point have primarily used diffusion tensor imaging (DTI) to model the three-dimensional diffusion of water in HD patients, with DTI parameters reflecting underlying microstructural changes of brain tissue. Since DTI has some limitations in characterizing tissue microstructure, some of which may be complicated by HD, we explored the use of the mean apparent propagator (MAP) model to describe diffusion in HD patients. We collected anatomical T1 and T2 FLAIR MRIs as well as multi-shell dMRI in ten HD participants and ten age-matched controls. The T1 and T2 FLAIR MRIs were used for tissue segmentation and identification of white matter hyperintensity, respectively. Multi-shell dMRI data were used to estimate MAP and DTI diffusion models. Each model was then used to characterize the differences between the HD cohort and the age-matched controls in normal appearing white matter, subcortical gray matter, corpus callosum (CC) and bilateral radiata (Rad). As expected, parameters of both DTI and MAP models of dMRI were significantly different in HD participants compared to controls. However, some MAP parameters suggested additional tissue microstructural changes in HD participants, such as increased axonal diameter. Measurements of non-Gaussianity indicated that MAP provided better a diffusion estimate than DTI, and MAP appeared to provide a more accurate measure of anisotropy in Rad, based on measures of the Rad/CC ratio. In conclusion, parameters of the MAP and DTI models were both sensitive to changes in diffusivity in HD participants compared to controls; however, the MAP model appeared to provide additional detailed information about changes in brain tissue microstructure.

Author List

Richerson WT, Muftuler LT, Wolfgram DF, Schmit BD

Authors

Lutfi Tugan Muftuler PhD Professor in the Neurosurgery department at Medical College of Wisconsin
Brian Schmit PhD Professor in the Biomedical Engineering department at Marquette University
Dawn Felicity Wolfgram MD Associate Professor in the Medicine department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Brain
Diffusion Magnetic Resonance Imaging
Diffusion Tensor Imaging
Humans
Magnetic Resonance Imaging
Pilot Projects
White Matter