Randomized Phase II Trial of Dendritic Cell/Myeloma Fusion Vaccine with Lenalidomide Maintenance after Upfront Autologous Hematopoietic Cell Transplantation for Multiple Myeloma: BMT CTN 1401. Clin Cancer Res 2023 Dec 01;29(23):4784-4796
Date
07/18/2023Pubmed ID
37463058Pubmed Central ID
PMC10690096DOI
10.1158/1078-0432.CCR-23-0235Scopus ID
2-s2.0-85178651085 (requires institutional sign-in at Scopus site) 9 CitationsAbstract
PURPOSE: Vaccination with dendritic cell (DC)/multiple myeloma (MM) fusions has been shown to induce the expansion of circulating multiple myeloma-reactive lymphocytes and consolidation of clinical response following autologous hematopoietic cell transplant (auto-HCT).
PATIENTS AND METHODS: In this randomized phase II trial (NCT02728102), we assessed the effect of DC/MM fusion vaccination, GM-CSF, and lenalidomide maintenance as compared with control arms of GM-CSF and lenalidomide or lenalidomide maintenance alone on clinical response rates and induction of multiple myeloma-specific immunity at 1-year posttransplant.
RESULTS: The study enrolled 203 patients, with 140 randomized posttransplantation. Vaccine production was successful in 63 of 68 patients. At 1 year, rates of CR were 52.9% (vaccine) and 50% (control; P = 0.37, 80% CI 44.5%, 61.3%, and 41.6%, 58.4%, respectively), and rates of VGPR or better were 85.3% (vaccine) and 77.8% (control; P = 0.2). Conversion to CR at 1 year was 34.8% (vaccine) and 27.3% (control; P = 0.4). Vaccination induced a statistically significant expansion of multiple myeloma-reactive T cells at 1 year compared with before vaccination (P = 0.024) and in contrast to the nonvaccine arm (P = 0.026). Single-cell transcriptomics revealed clonotypic expansion of activated CD8 cells and shared dominant clonotypes between patients at 1-year posttransplant.
CONCLUSIONS: DC/MM fusion vaccination with lenalidomide did not result in a statistically significant increase in CR rates at 1 year posttransplant but was associated with a significant increase in circulating multiple myeloma-reactive lymphocytes indicative of tumor-specific immunity. Site-specific production of a personalized cell therapy with centralized product characterization was effectively accomplished in the context of a multicenter cooperative group study. See related commentary by Qazilbash and Kwak, p. 4703.
Author List
Chung DJ, Shah N, Wu J, Logan B, Bisharat L, Callander N, Cheloni G, Anderson K, Chodon T, Dhakal B, Devine S, Somaiya Dutt P, Efebera Y, Geller N, Ghiasuddin H, Hematti P, Holmberg L, Howard A, Johnson B, Karagkouni D, Lazarus HM, Malek E, McCarthy P, McKenna D, Mendizabal A, Nooka A, Munshi N, O'Donnell L, Rapoport AP, Reese J, Rosenblatt J, Soiffer R, Stroopinsky D, Uhl L, Vlachos IS, Waller EK, Young JW, Pasquini MC, Avigan DAuthors
Binod Dhakal MD Associate Professor in the Medicine department at Medical College of WisconsinPeiman Hematti MD Professor in the Medicine department at Medical College of Wisconsin
Bryon D. Johnson PhD Adjunct Professor in the Medicine department at Medical College of Wisconsin
Brent R. Logan PhD Director, Professor in the Data Science Institute department at Medical College of Wisconsin
Marcelo C. Pasquini MD, MS Professor in the Medicine department at Medical College of Wisconsin
MESH terms used to index this publication - Major topics in bold
Antineoplastic Combined Chemotherapy ProtocolsDendritic Cells
Dexamethasone
Granulocyte-Macrophage Colony-Stimulating Factor
Hematopoietic Stem Cell Transplantation
Humans
Multiple Myeloma
Transplantation, Autologous