Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Artificial neural network approaches to identify maternal and infant risk and asset factors using Peridata.Net: a WI-MIOS study. JAMIA Open 2023 Oct;6(3):ooad080

Date

09/18/2023

Pubmed ID

37719084

Pubmed Central ID

PMC10500218

DOI

10.1093/jamiaopen/ooad080

Abstract

OBJECTIVE: To analyze PeriData.Net, a clinical registry with linked maternal-infant hospital data of Milwaukee County residents, to demonstrate a predictive analytic approach to perinatal infant risk assessment.

MATERIALS AND METHODS: Using unsupervised learning, we identified infant birth clusters with similar multivariate health indicator patterns, measured using perinatal variables from 2008 to 2019 from n = 43β€Š969 clinical registry records in Milwaukee County, WI, followed by supervised learning risk-propagation modeling to identify key maternal factors. To understand the relationship between socioeconomic status (SES) and birth outcome cluster assignment, we recoded zip codes in Peridata.Net according to SES level.

RESULTS: Three self-organizing map clusters describe infant birth outcome patterns that are similar in the multivariate space. Birth outcome clusters showed higher hazard birth outcome patterns in cluster 3 than clusters 1 and 2. Cluster 3 was associated with lower Apgar scores at 1 and 5 min after birth, shorter infant length, and premature birth. Prediction profiles of birth clusters indicate the most sensitivity to pregnancy weight loss and prenatal visits. Majority of infants assigned to cluster 3 were in the 2 lowest SES levels.

DISCUSSION: Using an extensive perinatal clinical registry, we found that the strongest predictive performance, when considering cluster membership using supervised learning, was achieved by incorporating social and behavioral risk factors. There were inequalities in infant birth outcomes based on SES.

CONCLUSION: Identifying infant risk hazard profiles can contribute to knowledge discovery and guide future research directions. Additionally, presenting the results to community members can build consensus for community-identified health and risk indicator prioritization for intervention development.

Author List

Holt JM, Talsma A, Johnson TS, Ehlinger T

Author

Teresa Johnson PhD Associate Professor in the Nursing department at University of Wisconsin - Milwaukee