Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Combined Immunotherapy Improves Outcome for Replication-Repair-Deficient (RRD) High-Grade Glioma Failing Anti-PD-1 Monotherapy: A Report from the International RRD Consortium. Cancer Discov 2024 Feb 08;14(2):258-273

Date

10/12/2023

Pubmed ID

37823831

Pubmed Central ID

PMC10850948

DOI

10.1158/2159-8290.CD-23-0559

Scopus ID

2-s2.0-85184656237 (requires institutional sign-in at Scopus site)   1 Citation

Abstract

UNLABELLED: Immune checkpoint inhibition (ICI) is effective for replication-repair-deficient, high-grade gliomas (RRD-HGG). The clinical/biological impact of immune-directed approaches after failing ICI monotherapy is unknown. We performed an international study on 75 patients treated with anti-PD-1; 20 are progression free (median follow-up, 3.7 years). After second progression/recurrence (n = 55), continuing ICI-based salvage prolonged survival to 11.6 months (n = 38; P < 0.001), particularly for those with extreme mutation burden (P = 0.03). Delayed, sustained responses were observed, associated with changes in mutational spectra and the immune microenvironment. Response to reirradiation was explained by an absence of deleterious postradiation indel signatures (ID8). CTLA4 expression increased over time, and subsequent CTLA4 inhibition resulted in response/stable disease in 75%. RAS-MAPK-pathway inhibition led to the reinvigoration of peripheral immune and radiologic responses. Local (flare) and systemic immune adverse events were frequent (biallelic mismatch-repair deficiency > Lynch syndrome). We provide a mechanistic rationale for the sustained benefit in RRD-HGG from immune-directed/synergistic salvage therapies. Future approaches need to be tailored to patient and tumor biology.

SIGNIFICANCE: Hypermutant RRD-HGG are susceptible to checkpoint inhibitors beyond initial progression, leading to improved survival when reirradiation and synergistic immune/targeted agents are added. This is driven by their unique biological and immune properties, which evolve over time. Future research should focus on combinatorial regimens that increase patient survival while limiting immune toxicity. This article is featured in Selected Articles from This Issue, p. 201.

Author List

Das A, Fernandez NR, Levine A, Bianchi V, Stengs LK, Chung J, Negm L, Dimayacyac JR, Chang Y, Nobre L, Ercan AB, Sanchez-Ramirez S, Sudhaman S, Edwards M, Larouche V, Samuel D, Van Damme A, Gass D, Ziegler DS, Bielack SS, Koschmann C, Zelcer S, Yalon-Oren M, Campino GA, Sarosiek T, Nichols KE, Loret De Mola R, Bielamowicz K, Sabel M, Frojd CA, Wood MD, Glover JM, Lee YY, Vanan M, Adamski JK, Perreault S, Chamdine O, Hjort MA, Zapotocky M, Carceller F, Wright E, Fedorakova I, Lossos A, Tanaka R, Osborn M, Blumenthal DT, Aronson M, Bartels U, Huang A, Ramaswamy V, Malkin D, Shlien A, Villani A, Dirks PB, Pugh TJ, Getz G, Maruvka YE, Tsang DS, Ertl-Wagner B, Hawkins C, Bouffet E, Morgenstern DA, Tabori U

Author

Ryuma Tanaka MD Assistant Professor in the Pediatrics department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Antineoplastic Agents
Brain Neoplasms
CTLA-4 Antigen
Glioma
Humans
Immunotherapy
Tumor Microenvironment