Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Large-scale meta-genome-wide association study reveals common genetic factors linked to radiation-induced acute toxicities across cancer types. JNCI Cancer Spectr 2023 Oct 31;7(6)

Date

10/20/2023

Pubmed ID

37862240

Pubmed Central ID

PMC10653584

DOI

10.1093/jncics/pkad088

Scopus ID

2-s2.0-85178100666 (requires institutional sign-in at Scopus site)

Abstract

BACKGROUND: This study was designed to identify common genetic susceptibility and shared genetic variants associated with acute radiation-induced toxicity across 4 cancer types (prostate, head and neck, breast, and lung).

METHODS: A genome-wide association study meta-analysis was performed using 19 cohorts totaling 12 042 patients. Acute standardized total average toxicity (STATacute) was modelled using a generalized linear regression model for additive effect of genetic variants, adjusted for demographic and clinical covariates (rSTATacute). Linkage disequilibrium score regression estimated shared single-nucleotide variation (SNV-formerly SNP)-based heritability of rSTATacute in all patients and for each cancer type.

RESULTS: Shared SNV-based heritability of STATacute among all cancer types was estimated at 10% (SE = 0.02) and was higher for prostate (17%, SE = 0.07), head and neck (27%, SE = 0.09), and breast (16%, SE = 0.09) cancers. We identified 130 suggestive associated SNVs with rSTATacute (5.0 × 10‒8 < P < 1.0 × 10‒5) across 25 genomic regions. rs142667902 showed the strongest association (effect allele A; effect size ‒0.17; P = 1.7 × 10‒7), which is located near DPPA4, encoding a protein involved in pluripotency in stem cells, which are essential for repair of radiation-induced tissue injury. Gene-set enrichment analysis identified 'RNA splicing via endonucleolytic cleavage and ligation' (P = 5.1 × 10‒6, P = .079 corrected) as the top gene set associated with rSTATacute among all patients. In silico gene expression analysis showed that the genes associated with rSTATacute were statistically significantly up-regulated in skin (not sun exposed P = .004 corrected; sun exposed P = .026 corrected).

CONCLUSIONS: There is shared SNV-based heritability for acute radiation-induced toxicity across and within individual cancer sites. Future meta-genome-wide association studies among large radiation therapy patient cohorts are worthwhile to identify the common causal variants for acute radiotoxicity across cancer types.

Author List

Naderi E, Aguado-Barrera ME, Schack LMH, Dorling L, Rattay T, Fachal L, Summersgill H, Martínez-Calvo L, Welsh C, Dudding T, Odding Y, Varela-Pazos A, Jena R, Thomson DJ, Steenbakkers RJHM, Dennis J, Lobato-Busto R, Alsner J, Ness A, Nutting C, Gómez-Caamaño A, Eriksen JG, Thomas SJ, Bates AM, Webb AJ, Choudhury A, Rosenstein BS, Taboada-Valladares B, Herskind C, Azria D, Dearnaley DP, de Ruysscher D, Sperk E, Hall E, Stobart H, Chang-Claude J, De Ruyck K, Veldeman L, Altabas M, De Santis MC, Farcy-Jacquet MP, Veldwijk MR, Sydes MR, Parliament M, Usmani N, Burnet NG, Seibold P, Symonds RP, Elliott RM, Bultijnck R, Gutiérrez-Enríquez S, Mollà M, Gulliford SL, Green S, Rancati T, Reyes V, Carballo A, Peleteiro P, Sosa-Fajardo P, Parker C, Fonteyne V, Johnson K, Lambrecht M, Vanneste B, Valdagni R, Giraldo A, Ramos M, Diergaarde B, Liu G, Leal SM, Chua MLK, Pring M, Overgaard J, Cascallar-Caneda LM, Duprez F, Talbot CJ, Barnett GC, Dunning AM, Vega A, Andreassen CN, Langendijk JA, West CML, Alizadeh BZ, Kerns SL, Radiogenomics Consortium

Author

Sarah L. Kerns PhD Associate Professor in the Radiation Oncology department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Breast
Genetic Predisposition to Disease
Genome-Wide Association Study
Humans
Male
Neoplasms