Late gene therapy limits the restoration of retinal function in a mouse model of retinitis pigmentosa. Nat Commun 2023 Dec 12;14(1):8256
Date
12/13/2023Pubmed ID
38086857Pubmed Central ID
PMC10716155DOI
10.1038/s41467-023-44063-8Scopus ID
2-s2.0-85179645989 (requires institutional sign-in at Scopus site)Abstract
Retinitis pigmentosa is an inherited photoreceptor degeneration that begins with rod loss followed by cone loss. This cell loss greatly diminishes vision, with most patients becoming legally blind. Gene therapies are being developed, but it is unknown how retinal function depends on the time of intervention. To uncover this dependence, we utilize a mouse model of retinitis pigmentosa capable of artificial genetic rescue. This model enables a benchmark of best-case gene therapy by removing variables that complicate answering this question. Complete genetic rescue was performed at 25%, 50%, and 70% rod loss (early, mid and late, respectively). Early and mid treatment restore retinal output to near wild-type levels. Late treatment retinas exhibit continued, albeit slowed, loss of sensitivity and signal fidelity among retinal ganglion cells, as well as persistent gliosis. We conclude that gene replacement therapies delivered after 50% rod loss are unlikely to restore visual function to normal. This is critical information for administering gene therapies to rescue vision.
Author List
Scalabrino ML, Thapa M, Wang T, Sampath AP, Chen J, Field GDAuthor
Miranda L. Scalabrino PhD Assistant Professor in the Ophthalmology and Visual Sciences department at Medical College of WisconsinMESH terms used to index this publication - Major topics in bold
AnimalsDisease Models, Animal
Genetic Therapy
Humans
Mice
Retina
Retinal Cone Photoreceptor Cells
Retinal Degeneration
Retinitis Pigmentosa