Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Response properties of the brainstem neurons of the cat following intra-esophageal acid-pepsin infusion. Neuroscience 2005;135(4):1285-94

Date

09/17/2005

Pubmed ID

16165290

DOI

10.1016/j.neuroscience.2005.07.016

Scopus ID

2-s2.0-26244434740 (requires institutional sign-in at Scopus site)   32 Citations

Abstract

Studies in humans have documented that acute acid infusion into the esophagus leads to decrease in threshold for sensations to mechanical distension of the esophagus. It is not known whether acid infusion leads to sensitization of brainstem neurons receiving synaptic input from vagal afferent fibers innervating the esophagus. The aim of this study was to investigate the correlation of responses of vagal afferents and brainstem neurons after acute infusion of acid (0.1 N HCl)+pepsin (1 mg/ml) into the esophagus of cats. The vagal afferent fibers (n=20) exhibited pressure-dependent increase in firing to graded esophageal distension (5-80 mm Hg). Infusion of acid+pepsin into the esophagus produced a significant increase in ongoing resting firing of five of 16 fibers (31%) tested. However, their responses to graded esophageal distension did not change when tested 30 min after infusion. Pepsin infusion did not change the resting firing and response to esophageal distension (n=4). Twenty-one brainstem neurons were recorded that responded in an intensity-dependent manner to graded esophageal distension. Responses of 12 excited neurons were tested after intra-esophageal acid+pepsin infusion. Neurons exhibited a decrease in threshold for response to esophageal distension and increase in firing after acid+pepsin infusion. The sensitization of response after intra-esophageal acid remained unaffected after cervical (C1-C2) spinal transection (n=3). Results indicate that the esophageal distension-sensitive neurons in the brainstem exhibit sensitization of response to esophageal distension after acute acid+pepsin exposure. The sensitization of brainstem neurons is possibly initiated by increased spontaneous firing of the vagal afferent fibers to acid+pepsin, but not to sensitized response of vagal distension-sensitive afferent fibers to esophageal distension. Results also indicate that spinal pathway does not contribute to sensitization of brainstem neurons.

Author List

Medda BK, Sengupta JN, Lang IM, Shaker R

Authors

Ivan M. Lang DVM, PhD Adjunct Professor in the Medicine department at Medical College of Wisconsin
Bidyut K. Medda PhD Associate Professor in the Medicine department at Medical College of Wisconsin
Jyoti N. Sengupta PhD Professor in the Medicine department at Medical College of Wisconsin
Reza Shaker MD Assoc Provost, Sr Assoc Dean, Ctr Dir, Chief, Prof in the Medicine department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Animals
Brain Stem
Cats
Dilatation
Electrophysiology
Esophagus
Female
Hydrochloric Acid
Male
Mechanoreceptors
Microelectrodes
Neurons, Afferent
Pepsin A
Vagus Nerve
Visceral Afferents