Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Sickle cell mice exhibit mechanical allodynia and enhanced responsiveness in light touch cutaneous mechanoreceptors. Mol Pain 2012 Sep 10;8:62

Date

09/12/2012

Pubmed ID

22963123

Pubmed Central ID

PMC3495672

DOI

10.1186/1744-8069-8-62

Scopus ID

2-s2.0-84865847334 (requires institutional sign-in at Scopus site)   45 Citations

Abstract

BACKGROUND: Sickle cell disease (SCD) is associated with both acute vaso-occlusive painful events as well as chronic pain syndromes, including heightened sensitivity to touch. We have previously shown that mice with severe SCD (HbSS mice; express 100% human sickle hemoglobin in red blood cells; RBCs) have sensitized nociceptors, which contribute to increased mechanical sensitivity. Yet, the hypersensitivity in these neural populations alone may not fully explain the mechanical allodynia phenotype in mouse and humans.

FINDINGS: Using the Light Touch Behavioral Assay, we found HbSS mice exhibited increased responses to repeated application of both innocuous punctate and dynamic force compared to control HbAA mice (100% normal human hemoglobin). HbSS mice exhibited a 2-fold increase in percent response to a 0.7mN von Frey monofilament when compared to control HbAA mice. Moreover, HbSS mice exhibited a 1.7-fold increase in percent response to the dynamic light touch "puffed" cotton swab stimulus. We further investigated the mechanisms that drive this behavioral phenotype by focusing on the cutaneous sensory neurons that primarily transduce innocuous, light touch. Low threshold cutaneous afferents from HbSS mice exhibited sensitization to mechanical stimuli that manifested as an increase in the number of evoked action potentials to suprathreshold force. Rapidly adapting (RA) Aβ and Aδ D-hair fibers showed the greatest sensitization, each with a 75% increase in suprathreshold firing compared to controls. Slowly adapting (SA) Aβ afferents had a 25% increase in suprathreshold firing compared to HbAA controls.

CONCLUSIONS: These novel findings demonstrate mice with severe SCD exhibit mechanical allodynia to both punctate and dynamic light touch and suggest that this behavioral phenotype may be mediated in part by the sensitization of light touch cutaneous afferent fibers to suprathreshold force. These findings indicate that Aβ fibers can be sensitized to mechanical force and should potentially be examined for sensitization in other tissue injury and disease models.

Author List

Garrison SR, Kramer AA, Gerges NZ, Hillery CA, Stucky CL

Authors

Nashaat Gerges PhD Chair, Professor in the School of Pharmacy Administration department at Medical College of Wisconsin
Cheryl L. Stucky PhD Professor in the Cell Biology, Neurobiology and Anatomy department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Action Potentials
Anemia, Sickle Cell
Animals
Humans
Hyperalgesia
Mechanoreceptors
Mice
Motor Activity
Nerve Fibers
Neurons, Afferent
Physical Stimulation
Skin
Touch