Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Changes in hemodynamic responses in chronic stroke survivors do not affect fMRI signal detection in a block experimental design. Magn Reson Imaging 2013 Sep;31(7):1119-28

Date

05/07/2013

Pubmed ID

23642802

Pubmed Central ID

PMC3822766

DOI

10.1016/j.mri.2013.02.009

Scopus ID

2-s2.0-84880722608 (requires institutional sign-in at Scopus site)   3 Citations

Abstract

The use of canonical functions to model BOLD-fMRI data in people post-stroke may lead to inaccurate descriptions of task-related brain activity. The purpose of this study was to determine whether the spatiotemporal profile of hemodynamic responses (HDRs) obtained from stroke survivors during an event-related experiment could be used to develop individualized HDR functions that would enhance BOLD-fMRI signal detection in block experiments. Our long term goal was to use this information to develop individualized HDR functions for stroke survivors that could be used to analyze brain activity associated with locomotor-like movements. We also aimed to examine the reproducibility of HDRs obtained across two scan sessions in order to determine whether data from a single event-related session could be used to analyze block data obtained in subsequent sessions. Results indicate that the spatiotemporal profile of HDRs measured with BOLD-fMRI in stroke survivors was not the same as that observed in individuals without stroke. We observed small between-group differences in the rates of rise and decline of HDRs that were more apparent in individuals with cortical as compared to subcortical stroke. There were no differences in the peak or time to peak of HDRs in people with and without stroke. Of interest, differences in HDRs were not as substantial as expected from previous reports and were not large enough to necessitate the use of individualized HDR functions to obtain valid measures of movement-related brain activity. We conclude that all strokes do not affect the spatiotemporal characteristics of HDRs in such a way as to produce inaccurate representations of brain activity as measured by BOLD-fMRI. However, care should be taken to identify individuals whose BOLD-fMRI data may not provide an accurate representation of underlying brain activation when canonical models are used. Examination of HDRs need not be done for each scan session, as our data suggest that the characteristics of HDRs in stroke survivors are reproducible across days.

Author List

Promjunyakul NO, Schmit BD, Schindler-Ivens S

Authors

Sheila Schindler-Ivens PhD Assistant Professor in the Physical Therapy department at Marquette University
Brian Schmit PhD Professor in the Biomedical Engineering department at Marquette University




MESH terms used to index this publication - Major topics in bold

Adult
Aged
Brain
Brain Mapping
Cerebrovascular Circulation
Female
Hemodynamics
Humans
Image Processing, Computer-Assisted
Locomotion
Magnetic Resonance Imaging
Male
Middle Aged
Oxygen
Reproducibility of Results
Stroke
Time Factors
Young Adult