Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Chemical and biological characterization of oxo-eicosatetraenoic acids. Biochim Biophys Acta 1994 Dec 15;1201(3):505-15

Date

12/15/1994

Pubmed ID

7803484

DOI

10.1016/0304-4165(94)90083-3

Scopus ID

2-s2.0-0027999643 (requires institutional sign-in at Scopus site)   38 Citations

Abstract

Eicosatetraenoates (ETEs) with 5-oxo residues are known to induce human neutrophil (PMN) Ca2+ transients and chemotaxis. We find that 5-oxoETE, 5-oxo-8-trans-ETE, 5-oxo-15-hydroxy-ETE, 5-hydroxy-ETE, 5-hydroxy-15-oxoETE, 5,15-dioxoETE, and 5,15-dihydroxy-ETE have respective relative potencies of 10, 5, 3, 1, 0.2, 0.1, and 0.02 in: a) causing PMN to mobilize Ca2+, aggregate, and release small amounts of granule enzymes and b) promoting large degranulation and oxidative burst responses in PMN co-challenged with platelet-activating factor, tumor necrosis factor-alpha, or ATP. Contrastingly, 12(R)-hydroxy-ETE, 12(S)-hydroxy-ETE, and 12-oxoETE induced PMN Ca2+ transients and aggregation [respective potencies (5-hydroxy-ETE = 1) of 0.1, 0.01, and 0.003] but did not effect degranulation, and 15-hydroxy-ETE, 15-oxoETE, and 15-oxo-11-trans-ETE were inactive in all assays. Finally, 5-oxo/hydroxy-ETEs desensitized PMN to themselves but not to 12-oxo/hydroxy-ETEs or leukotriene (LT)B4; 12-oxo/hydroxy-ETEs and LTB4 desensitized PMN to themselves and each other but not to 5-oxo/hydroxy-ETEs; 15-oxo/hydroxy-ETEs did not desensitize PMN; and a LTB4 receptor antagonist blocked responses to LTB4 and 12-oxo/hydroxy-ETEs but not to 5-oxo/hydroxy-ETEs. Thus, 5-oxo/hydroxy-ETEs act by a common, LTB4 receptor-independent mechanism that recognizes 5- but not 12- or 15-oxo/hydroxy-ETEs and prefers oxo over hydroxy residues at C5 whereas 12-oxo/hydroxy-ETEs act via a LTB4 receptor mechanism that recognizes 12- but not 5- or 15-oxo/hydroxy-ETEs and prefers hydroxy over oxo residues at C12.

Author List

O'Flaherty JT, Cordes JF, Lee SL, Samuel M, Thomas MJ

Author

Michael J. Thomas PhD Professor in the Pharmacology and Toxicology department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Arachidonic Acids
Isomerism