Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Neurobiological mechanisms associated with facial affect recognition deficits after traumatic brain injury. Brain Imaging Behav 2016 Jun;10(2):569-80

Date

06/05/2015

Pubmed ID

26040980

DOI

10.1007/s11682-015-9415-3

Scopus ID

2-s2.0-84930340437 (requires institutional sign-in at Scopus site)   12 Citations

Abstract

The neurobiological mechanisms that underlie facial affect recognition deficits after traumatic brain injury (TBI) have not yet been identified. Using functional magnetic resonance imaging (fMRI), study aims were to 1) determine if there are differences in brain activation during facial affect processing in people with TBI who have facial affect recognition impairments (TBI-I) relative to people with TBI and healthy controls who do not have facial affect recognition impairments (TBI-N and HC, respectively); and 2) identify relationships between neural activity and facial affect recognition performance. A facial affect recognition screening task performed outside the scanner was used to determine group classification; TBI patients who performed greater than one standard deviation below normal performance scores were classified as TBI-I, while TBI patients with normal scores were classified as TBI-N. An fMRI facial recognition paradigm was then performed within the 3T environment. Results from 35 participants are reported (TBI-I = 11, TBI-N = 12, and HC = 12). For the fMRI task, TBI-I and TBI-N groups scored significantly lower than the HC group. Blood oxygenation level-dependent (BOLD) signals for facial affect recognition compared to a baseline condition of viewing a scrambled face, revealed lower neural activation in the right fusiform gyrus (FG) in the TBI-I group than the HC group. Right fusiform gyrus activity correlated with accuracy on the facial affect recognition tasks (both within and outside the scanner). Decreased FG activity suggests facial affect recognition deficits after TBI may be the result of impaired holistic face processing. Future directions and clinical implications are discussed.

Author List

Neumann D, McDonald BC, West J, Keiski MA, Wang Y

Author

Yang Wang MD Professor in the Radiology department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Adult
Affect
Brain Injuries, Traumatic
Emotions
Face
Facial Expression
Facial Recognition
Female
Humans
Magnetic Resonance Imaging
Male
Middle Aged
Neuropsychological Tests