Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes: Methodology development and its application to studies of porcine lens membranes. Exp Eye Res 2015 Nov;140:179-186



Pubmed ID


Pubmed Central ID





An electron paramagnetic resonance spin-labeling method has been developed that allows quantitative evaluation of the amounts of phospholipids and cholesterol in lipid domains of intact fiber-cell plasma membranes isolated from cortical and nuclear regions of eye lenses. The long term goal of this research is the assessment of organizational changes in human lens fiber cell membranes that occur with age and during cataract development. The measurements needed to be performed on lens membranes prepared from eyes of single donors and from single eyes. For these types of studies it is necessary to separate the age/cataract related changes from preparation/technique related changes. Human lenses differ not only because of age, but also because of the varying health histories of the donors. To solve these problems the sample-to-sample preparation/technique related changes were evaluated for cortical and nuclear lens membranes prepared from single porcine eyes. It was assumed that the differences due to the age (animals were two year old) and environmental conditions for raising these animals were minimal. Mean values and standard deviations from preparation/technique changes for measured amounts of lipids in membrane domains were calculated. Statistical analysis (Student's t-test) of the data also allowed determining the differences of mean values which were statistically significant with P ≤ 0.05. These differences defined for porcine lenses will be used for comparison of amounts of lipids in domains in human lens membranes prepared from eyes of single donors and from single eyes. Greater separations will indicate that differences were statistically significant with (P ≤ 0.05) and that they came from different than preparation/technique sources. Results confirmed that in nuclear porcine membranes the amounts of lipids in domains created due to the presence of membrane proteins were greater than those in cortical membranes and the differences were larger than the differences observed for human intact fiber cell membranes [Raguz, M. Mainali, L., O'Brien, W.J., and Subczynski, W.K. (2015) Exp. Eye Res.]. Lipids in porcine nuclear fiber cell plasma membranes were more rigid and less permeable to oxygen than in human nuclear membranes. Most likely the significant differences in the lipid composition were responsible for the observed differences.

Author List

Raguz M, Mainali L, O'Brien WJ, Subczynski WK


Witold K. Subczynski PhD Professor in the Biophysics department at Medical College of Wisconsin

MESH terms used to index this publication - Major topics in bold

Cell Membrane
Electron Spin Resonance Spectroscopy
Hydrophobic and Hydrophilic Interactions
Lens Cortex, Crystalline
Lens Nucleus, Crystalline
Lipid Bilayers
Membrane Lipids
Spin Labels
Sus scrofa