Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood 2016 Jun 09;127(23):2791-803

Date

04/17/2016

Pubmed ID

27084890

Pubmed Central ID

PMC5016734

DOI

10.1182/blood-2015-12-688267

Scopus ID

2-s2.0-84993990664 (requires institutional sign-in at Scopus site)   157 Citations

Abstract

Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.

Author List

Simeoni I, Stephens JC, Hu F, Deevi SV, Megy K, Bariana TK, Lentaigne C, Schulman S, Sivapalaratnam S, Vries MJ, Westbury SK, Greene D, Papadia S, Alessi MC, Attwood AP, Ballmaier M, Baynam G, Bermejo E, Bertoli M, Bray PF, Bury L, Cattaneo M, Collins P, Daugherty LC, Favier R, French DL, Furie B, Gattens M, Germeshausen M, Ghevaert C, Goodeve AC, Guerrero JA, Hampshire DJ, Hart DP, Heemskerk JW, Henskens YM, Hill M, Hogg N, Jolley JD, Kahr WH, Kelly AM, Kerr R, Kostadima M, Kunishima S, Lambert MP, Liesner R, López JA, Mapeta RP, Mathias M, Millar CM, Nathwani A, Neerman-Arbez M, Nurden AT, Nurden P, Othman M, Peerlinck K, Perry DJ, Poudel P, Reitsma P, Rondina MT, Smethurst PA, Stevenson W, Szkotak A, Tuna S, van Geet C, Whitehorn D, Wilcox DA, Zhang B, Revel-Vilk S, Gresele P, Bellissimo DB, Penkett CJ, Laffan MA, Mumford AD, Rendon A, Gomez K, Freson K, Ouwehand WH, Turro E

Author

David A. Wilcox PhD Professor in the Pediatrics department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Blood Platelet Disorders
Case-Control Studies
DNA Copy Number Variations
Female
Genetic Association Studies
Genetic Predisposition to Disease
Hemorrhage
High-Throughput Nucleotide Sequencing
Humans
Male
Mutation
Polymorphism, Single Nucleotide
Sequence Analysis, DNA
Thrombosis