Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

The natural history of fetal long QT syndrome. J Electrocardiol 2016;49(6):807-813

Date

08/20/2016

Pubmed ID

27539165

Pubmed Central ID

PMC5159227

DOI

10.1016/j.jelectrocard.2016.07.023

Scopus ID

2-s2.0-84992751019 (requires institutional sign-in at Scopus site)   25 Citations

Abstract

INTRODUCTION: Fetal magnetocardiography (fMCG), the magnetic analog of ECG, has provided invaluable insight into the mechanisms of fetal arrhythmias. In the past 15years, we have evaluated over 300 fetuses with arrhythmia by fMCG. We review the unique characteristics and natural history of the long QT syndrome (LQTS) rhythms.

METHODS: We reviewed the fMCGs of subjects referred with suspected LQTS based on either a positive family history or echo diagnosis of the LQTS rhythms (sinus bradycardia, ventricular tachycardia, or 2:1 AV conduction) to the Biomagnetism laboratory in the Department of Medical Physics, UW-Madison. We recorded fMCGs using a 37-channel (Magnes, 4D Neuroimaging, Inc., San Diego, CA) superconducting quantum interference device (SQUID) biomagnetometer, housed in a magnetically-shielded room for 1200-6000s. Signal processing was used to remove maternal interference. Cardiac intervals (R-R, p, QRS, QT) were measured and compared to published normals. We correlated fetal heart rate (FHR) patterns and effects of fetal movement on FHR and rhythm using actocardiography.

RESULTS: Thirty-nine fetuses were studied at a mean of 28 (19-38) weeks of gestation. All had structurally normal hearts. One was on amiodarone for suspected supraventricular tachycardia and hydrops. Five had serial fMCGs. Isolated sinus bradycardia with a QTc >490ms was found in 35: 33 had a KCNQ1 mutation There was one false positive and one false negative LQTS diagnosis. Four fetuses had torsades de pointes (TdP) and 3 had periods of 2:1 conduction and either KCNH2 or SCN5A mutations. TdP was rarely initiated with a preceding long-short pattern and did not degenerate into ventricular fibrillation. One fetus with TdP died in utero, 2 with fetal TdP had postnatal cardiac arrest.

CONCLUSION: Fetal LQTS is diagnosed by an fMCG QTc >490ms with an 89% sensitivity and specificity. TdP are seen with uncharacterized, KCNH2 or SCN5A R1623q mutations. Fetal TdP occurs when QTc ≥620ms. Identifying fetal LQTS and defining its rhythms by fMCG risk stratifies postnatal management.

Author List

Cuneo BF, Strasburger JF, Wakai RT

Author

Janette F. Strasburger MD Professor in the Pediatrics department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Disease Progression
Electrocardiography
Female
Fetal Diseases
Fetal Monitoring
Humans
Long QT Syndrome
Magnetocardiography
Male
Reproducibility of Results
Sensitivity and Specificity