Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Acyclophostin: a ribose-modified analog of adenophostin A with high affinity for inositol 1,4,5-trisphosphate receptors and pH-dependent efficacy. Mol Pharmacol 1999 Jan;55(1):109-17

Date

01/12/1999

Pubmed ID

9882704

DOI

10.1124/mol.55.1.109

Scopus ID

2-s2.0-0032953886   30 Citations

Abstract

Adenophostin A is the most potent known agonist of D-myo-inositol 1, 4,5-trisphosphate [Ins(1,4,5)P3] receptors. Equilibrium competition binding studies with 3H-Ins(1,4,5)P3 showed that the interaction of a totally synthetic adenophostin A with both hepatic and cerebellar Ins(1,4,5)P3 receptors was indistinguishable from that of the natural product. At pH 8.3, a synthetic analog of adenophostin A (which we named acyclophostin), in which most elements of the ribose ring have been removed, bound with substantially higher affinity (Kd = 2.76 +/- 0.26 nM) than Ins(1,4,5)P3 (Kd = 7.96 +/- 1.02 nM) to the 3H-Ins(1,4,5)P3-binding sites of hepatic membranes. At pH 7, acyclophostin (EC50 = 209 +/- 12 nM) and Ins(1,4,5)P3 (EC50 = 153 +/- 11 nM) stimulated 45Ca++ release to the same maximal extent and from the same intracellular stores of permeabilized hepatocytes. Comparison of the affinities of a range of Ins(1,4,5)P3 and adenophostin analogs with their abilities to stimulate Ca++ release revealed that although all other agonists had similar EC50/Kd ratios, that for acyclophostin was significantly higher. Similar results were obtained with cerebellar membranes, which express almost entirely type 1 InsP3 receptors. When the radioligand binding and functional assays of hepatocytes were performed under identical conditions, the higher EC50/Kd ratio for acyclophostin was retained at pH 8.3, but it was similar to that for Ins(1,4,5)P3 when the assays were performed at pH 7. To directly assess whether acyclophostin was a partial agonist of hepatic Ins(1,4,5)P3 receptors, the kinetics of 45Ca++ efflux from permeabilized hepatocytes was measured with a temporal resolution of 80 ms using rapid superfusion. At pH 7, the kinetics of 45Ca++ release, including the maximal rate of release, evoked by maximal concentrations of acyclophostin or Ins(1,4,5)P3 were indistinguishable. At pH 8.3, however, the maximal rate of 45Ca++ release evoked by a supramaximal concentration of acyclophostin was only 69 +/- 7% of that evoked by Ins(1,4,5)P3. We conclude that acyclophostin is the highest affinity ribose-modified analog of adenophostin so far synthesized, that at high pH it is a partial agonist of inositol trisphosphate receptors, and that it may provide a structure from which to develop high-affinity antagonists of inositol trisphosphate receptors.

Author List

Beecroft MD, Marchant JS, Riley AM, Van Straten NC, Van der Marel GA, Van Boom JH, Potter BV, Taylor CW

Author

Jonathan S. Marchant PhD Chair, Professor in the Cell Biology, Neurobiology and Anatomy department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Adenosine
Animals
Brain
Calcium
Calcium Channels
Hydrogen-Ion Concentration
Inositol 1,4,5-Trisphosphate Receptors
Liver
Male
Rats
Rats, Wistar
Receptors, Cytoplasmic and Nuclear
Structure-Activity Relationship
jenkins-FCD Prod-482 91ad8a360b6da540234915ea01ff80e38bfdb40a