Brain region-specific changes in N-acylethanolamine contents with time of day. J Neurochem 2014 Feb;128(4):491-506
Date
10/22/2013Pubmed ID
24138639Pubmed Central ID
PMC3946166DOI
10.1111/jnc.12495Scopus ID
2-s2.0-84893858551 (requires institutional sign-in at Scopus site) 22 CitationsAbstract
The N-acylethanolamines (NAEs) exert important behavioral, physiological, and immunological effects through actions at cannabinoid and other receptors. We measured concentrations of three NAEs, the Km and Vmax for fatty acid amide hydrolysis (FAAH), FAAH protein and FAAH mRNA in prefrontal cortex, hippocampus, hypothalamus, amygdala, striatum, and cerebellum at 4 h intervals, starting at 03:00. Significant differences in N-arachidonylethanolamine contents among the times examined occur in the prefrontal cortex (PFC), hippocampus, hypothalamus, and striatum. N-Oleoylethanolamine concentrations exhibit large fluctuations over the day in the cerebellum, including a threefold decrease between 19:00 and 23:00. N-Palmitoylethanolamine and N-oleoylethanolamine were significantly, positively correlated in all regions examined except the hypothalamus. FAAH Km values are significantly affected by time of day in PFC, hippocampus and amygdala and FAAH Vmax values are significantly affected in PFC, hippocampus and cerebellum. However, correlational data indicate that FAAH does not play a primary role in the circadian regulation of the NAE concentrations. FAAH protein expression is not significantly different among the harvest times in any brain region examined. Concentrations of 2-arachidonoylglycerol are significantly affected by time of harvest in the striatum and cerebellum, but not in other brain regions. Together, these data indicate that the NAEs exhibit diverse patterns of change with time of day that are likely the result of alterations in biosynthesis, and support the hypothesis that N-arachidonylethanolamine is a tonic activator of cannabinoid receptor signaling.
Author List
Liedhegner ES, Sasman A, Hillard CJAuthor
Cecilia J. Hillard PhD Professor in the Pharmacology and Toxicology department at Medical College of WisconsinMESH terms used to index this publication - Major topics in bold
AmidohydrolasesAnimals
Blotting, Western
Brain Chemistry
Circadian Rhythm
Data Interpretation, Statistical
Ethanolamines
Lipid Metabolism
Male
Mice
Mice, Inbred ICR
Phosphatidylethanolamines
RNA, Messenger
Receptor, Cannabinoid, CB1