Implantation of fibrin gel on mouse lung to study lung-specific angiogenesis. J Vis Exp 2014 Dec 21(94)
Date
12/31/2014Pubmed ID
25548859Pubmed Central ID
PMC4396947DOI
10.3791/52012Scopus ID
2-s2.0-84921634387 (requires institutional sign-in at Scopus site) 14 CitationsAbstract
Recent significant advances in stem cell research and bioengineering techniques have made great progress in utilizing biomaterials to regenerate and repair damage in simple tissues in the orthopedic and periodontal fields. However, attempts to regenerate the structures and functions of more complex three-dimensional (3D) organs such as lungs have not been very successful because the biological processes of organ regeneration have not been well explored. It is becoming clear that angiogenesis, the formation of new blood vessels, plays key roles in organ regeneration. Newly formed vasculatures not only deliver oxygen, nutrients and various cell components that are required for organ regeneration but also provide instructive signals to the regenerating local tissues. Therefore, to successfully regenerate lungs in an adult, it is necessary to recapitulate the lung-specific microenvironments in which angiogenesis drives regeneration of local lung tissues. Although conventional in vivo angiogenesis assays, such as subcutaneous implantation of extracellular matrix (ECM)-rich hydrogels (e.g., fibrin or collagen gels or Matrigel - ECM protein mixture secreted by Engelbreth-Holm-Swarm mouse sarcoma cells), are extensively utilized to explore the general mechanisms of angiogenesis, lung-specific angiogenesis has not been well characterized because methods for orthotopic implantation of biomaterials in the lung have not been well established. The goal of this protocol is to introduce a unique method to implant fibrin gel on the lung surface of living adult mouse, allowing for the successful recapitulation of host lung-derived angiogenesis inside the gel. This approach enables researchers to explore the mechanisms by which the lung-specific microenvironment controls angiogenesis and alveolar regeneration in both normal and pathological conditions. Since implanted biomaterials release and supply physical and chemical signals to adjacent lung tissues, implantation of these biomaterials on diseased lung can potentially normalize the adjacent diseased tissues, enabling researchers to develop new therapeutic approaches for various types of lung diseases.
Author List
Mammoto T, Mammoto AAuthors
Akiko Mammoto MD, PhD Associate Professor in the Pediatrics department at Medical College of WisconsinTadanori Mammoto MD, PhD Associate Professor in the Pediatrics department at Medical College of Wisconsin
MESH terms used to index this publication - Major topics in bold
AnimalsBiocompatible Materials
Biological Assay
Collagen
Drug Combinations
Extracellular Matrix
Fibrin
Hydrogels
Laminin
Lung
Mice
Neovascularization, Pathologic
Proteoglycans
Regeneration