Medical College of Wisconsin
CTSIResearch InformaticsREDCap

Scope and Mechanistic Analysis for Chemoselective Hydrogenolysis of Carbonyl Compounds Catalyzed by a Cationic Ruthenium Hydride Complex with a Tunable Phenol Ligand. J Am Chem Soc 2015 Sep 02;137(34):11105-14

Date

08/04/2015

Pubmed ID

26235841

DOI

10.1021/jacs.5b06097

Scopus ID

2-s2.0-84940860016 (requires institutional sign-in at Scopus site)   58 Citations

Abstract

A cationic ruthenium hydride complex, [(C6H6)(PCy3)(CO)RuH](+)BF4(-) (1), with a phenol ligand was found to exhibit high catalytic activity for the hydrogenolysis of carbonyl compounds to yield the corresponding aliphatic products. The catalytic method showed exceptionally high chemoselectivity toward the carbonyl reduction over alkene hydrogenation. Kinetic and spectroscopic studies revealed a strong electronic influence of the phenol ligand on the catalyst activity. The Hammett plot of the hydrogenolysis of 4-methoxyacetophenone displayed two opposite linear slopes for the catalytic system 1/p-X-C6H4OH (ρ = -3.3 for X = OMe, t-Bu, Et, and Me; ρ = +1.5 for X = F, Cl, and CF3). A normal deuterium isotope effect was observed for the hydrogenolysis reaction catalyzed by 1/p-X-C6H4OH with an electron-releasing group (kH/kD = 1.7-2.5; X = OMe, Et), whereas an inverse isotope effect was measured for 1/p-X-C6H4OH with an electron-withdrawing group (kH/kD = 0.6-0.7; X = Cl, CF3). The empirical rate law was determined from the hydrogenolysis of 4-methoxyacetophenone: rate = kobsd[Ru][ketone][H2](-1) for the reaction catalyzed by 1/p-OMe-C6H4OH, and rate = kobsd[Ru][ketone][H2](0) for the reaction catalyzed by 1/p-CF3-C6H4OH. Catalytically relevant dinuclear ruthenium hydride and hydroxo complexes were synthesized, and their structures were established by X-ray crystallography. Two distinct mechanistic pathways are presented for the hydrogenolysis reaction on the basis of these kinetic and spectroscopic data.

Author List

Kalutharage N, Yi CS

Author

Chae Yi PhD Professor, Inorganic and Organometallic Chemistry, Homogeneous Catalysis in the Chemistry department at Marquette University




MESH terms used to index this publication - Major topics in bold

Aldehydes
Catalysis
Cations
Hydrocarbons
Hydrogen
Ketones
Ligands
Molecular Structure
Organometallic Compounds
Phenols
Ruthenium