Predataxis behavior in Myxococcus xanthus. Proc Natl Acad Sci U S A 2008 Nov 04;105(44):17127-32
Date
10/28/2008Pubmed ID
18952843Pubmed Central ID
PMC2579389DOI
10.1073/pnas.0804387105Scopus ID
2-s2.0-55949134132 (requires institutional sign-in at Scopus site) 92 CitationsAbstract
Spatial organization of cells is important for both multicellular development and tactic responses to a changing environment. We find that the social bacterium, Myxococcus xanthus utilizes a chemotaxis (Che)-like pathway to regulate multicellular rippling during predation of other microbial species. Tracking of GFP-labeled cells indicates directed movement of M. xanthus cells during the formation of rippling wave structures. Quantitative analysis of rippling indicates that ripple wavelength is adaptable and dependent on prey cell availability. Methylation of the receptor, FrzCD is required for this adaptation: a frzF methyltransferase mutant is unable to construct ripples, whereas a frzG methylesterase mutant forms numerous, tightly packed ripples. Both the frzF and frzG mutant strains are defective in directing cell movement through prey colonies. These data indicate that the transition to an organized multicellular state during predation in M. xanthus relies on the tactic behavior of individual cells, mediated by a Che-like signal transduction pathway.
Author List
Berleman JE, Scott J, Chumley T, Kirby JRAuthor
John Kirby PhD Chair, Center Associate Director, Professor in the Microbiology and Immunology department at Medical College of WisconsinMESH terms used to index this publication - Major topics in bold
Bacterial ProteinsCell Movement
Chemotaxis
Escherichia coli
Mutation
Myxococcus xanthus
Signal Transduction
Spores, Bacterial