Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Mapping of the residues involved in a proposed beta-strand located in the ferric enterobactin receptor FepA using site-directed spin-labeling. Biochemistry 1997 Oct 21;36(42):13027-33

Date

10/23/1997

Pubmed ID

9335564

DOI

10.1021/bi971232m

Scopus ID

2-s2.0-0030693909 (requires institutional sign-in at Scopus site)   58 Citations

Abstract

Electron paramagnetic resonance (EPR) site-directed spin-labeling (SDSL) has been used to characterize a proposed transmembrane beta-strand of the Escherichia coli ferric enterobactin receptor, FepA. Each of nine consecutive residues was mutated to cysteine and subsequently labeled with the sulfhydryl-specific spin-label methanethiosulfonate (MTSL) and the purified protein reconstituted into liposomes. Continuous wave (CW) power saturation methods were used to determine exposure of the nitroxide side chains to a series of paramagnetic relaxation agents, including nickel acetylacetonate (NiAA), nickel ethylenediaminediacetate (NiEDDA), chromium oxalate (CROX), and molecular oxygen. The spin-label attached to Q245C, L247C, L249C, A251C, and Y253C had higher collision frequencies with molecular oxygen than with polar relaxation agents, indicating that these sites are exposed to the hydrophobic phase of the lipid bilayer. MTSL bound to residues S246C, E248C, E250C, and G252C had higher collision rates with the polar agents than with oxygen, suggesting that these sites are exposed to the aqueous channel. The alternating periodicity observed with the polar relaxation agents, NiAA and NiEDDA, and in opposite phase with oxygen, is consistent with beta-sheet structure. Depth measurements, based on the reciprocal concentration gradients of NiEDDA and O2 across the bilayer and calibrated for our system with phosphatidylcholine spin-labels, indicated that L249C was nearest the center of the bilayer and that Q245C and Y253C were located just below the bilayer surface in opposite leaflets of the membrane. Thus, we conclude that this approach, through mapping of individual residues, has the capability of defining beta-sheet secondary structure.

Author List

Klug CS, Su W, Feix JB

Authors

Jimmy B. Feix PhD Professor in the Biophysics department at Medical College of Wisconsin
Candice S. Klug PhD Professor in the Biophysics department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Amino Acid Sequence
Amino Acid Substitution
Bacterial Outer Membrane Proteins
Binding Sites
Carrier Proteins
Colicins
Cysteine
Edetic Acid
Electron Spin Resonance Spectroscopy
Enterobactin
Escherichia coli
Hydroxybutyrates
Lipid Bilayers
Liposomes
Mesylates
Models, Structural
Molecular Sequence Data
Mutagenesis, Site-Directed
Nickel
Oxalates
Oxygen
Pentanones
Protein Structure, Secondary
Receptors, Cell Surface
Recombinant Proteins
Spin Labels