Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Mechanical power in pediatric acute respiratory distress syndrome: a PARDIE study. Crit Care 2022 Jan 03;26(1):2

Date

01/05/2022

Pubmed ID

34980228

Pubmed Central ID

PMC8722295

DOI

10.1186/s13054-021-03853-6

Scopus ID

2-s2.0-85123231433 (requires institutional sign-in at Scopus site)   19 Citations

Abstract

BACKGROUND: Mechanical power is a composite variable for energy transmitted to the respiratory system over time that may better capture risk for ventilator-induced lung injury than individual ventilator management components. We sought to evaluate if mechanical ventilation management with a high mechanical power is associated with fewer ventilator-free days (VFD) in children with pediatric acute respiratory distress syndrome (PARDS).

METHODS: Retrospective analysis of a prospective observational international cohort study.

RESULTS: There were 306 children from 55 pediatric intensive care units included. High mechanical power was associated with younger age, higher oxygenation index, a comorbid condition of bronchopulmonary dysplasia, higher tidal volume, higher delta pressure (peak inspiratory pressure-positive end-expiratory pressure), and higher respiratory rate. Higher mechanical power was associated with fewer 28-day VFD after controlling for confounding variables (per 0.1 J·min-1·Kg-1 Subdistribution Hazard Ratio (SHR) 0.93 (0.87, 0.98), p = 0.013). Higher mechanical power was not associated with higher intensive care unit mortality in multivariable analysis in the entire cohort (per 0.1 J·min-1·Kg-1 OR 1.12 [0.94, 1.32], p = 0.20). But was associated with higher mortality when excluding children who died due to neurologic reasons (per 0.1 J·min-1·Kg-1 OR 1.22 [1.01, 1.46], p = 0.036). In subgroup analyses by age, the association between higher mechanical power and fewer 28-day VFD remained only in children < 2-years-old (per 0.1 J·min-1·Kg-1 SHR 0.89 (0.82, 0.96), p = 0.005). Younger children were managed with lower tidal volume, higher delta pressure, higher respiratory rate, lower positive end-expiratory pressure, and higher PCO2 than older children. No individual ventilator management component mediated the effect of mechanical power on 28-day VFD.

CONCLUSIONS: Higher mechanical power is associated with fewer 28-day VFDs in children with PARDS. This association is strongest in children < 2-years-old in whom there are notable differences in mechanical ventilation management. While further validation is needed, these data highlight that ventilator management is associated with outcome in children with PARDS, and there may be subgroups of children with higher potential benefit from strategies to improve lung-protective ventilation.

TAKE HOME MESSAGE: Higher mechanical power is associated with fewer 28-day ventilator-free days in children with pediatric acute respiratory distress syndrome. This association is strongest in children <2-years-old in whom there are notable differences in mechanical ventilation management.

Author List

Bhalla AK, Klein MJ, Modesto I Alapont V, Emeriaud G, Kneyber MCJ, Medina A, Cruces P, Diaz F, Takeuchi M, Maddux AB, Mourani PM, Camilo C, White BR, Yehya N, Pappachan J, Di Nardo M, Shein S, Newth C, Khemani R, Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network

Author

Rainer G. Gedeit MD Associate Chief Medical Officer in the Children's Administration department at Children's Wisconsin




MESH terms used to index this publication - Major topics in bold

Adolescent
Adult
Child
Child, Preschool
Cohort Studies
Humans
Infant, Newborn
Intensive Care Units, Pediatric
Respiration, Artificial
Retrospective Studies