Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nat Med 2022 Jan;28(1):125-135

Date

01/08/2022

Pubmed ID

34992263

Pubmed Central ID

PMC8799468

DOI

10.1038/s41591-021-01581-6

Scopus ID

2-s2.0-85122396368 (requires institutional sign-in at Scopus site)   55 Citations

Abstract

Cancers arising from germline DNA mismatch repair deficiency or polymerase proofreading deficiency (MMRD and PPD) in children harbour the highest mutational and microsatellite insertion-deletion (MS-indel) burden in humans. MMRD and PPD cancers are commonly lethal due to the inherent resistance to chemo-irradiation. Although immune checkpoint inhibitors (ICIs) have failed to benefit children in previous studies, we hypothesized that hypermutation caused by MMRD and PPD will improve outcomes following ICI treatment in these patients. Using an international consortium registry study, we report on the ICI treatment of 45 progressive or recurrent tumors from 38 patients. Durable objective responses were observed in most patients, culminating in a 3 year survival of 41.4%. High mutation burden predicted response for ultra-hypermutant cancers (>100 mutations per Mb) enriched for combined MMRD + PPD, while MS-indels predicted response in MMRD tumors with lower mutation burden (10-100 mutations per Mb). Furthermore, both mechanisms were associated with increased immune infiltration even in 'immunologically cold' tumors such as gliomas, contributing to the favorable response. Pseudo-progression (flare) was common and was associated with immune activation in the tumor microenvironment and systemically. Furthermore, patients with flare who continued ICI treatment achieved durable responses. This study demonstrates improved survival for patients with tumors not previously known to respond to ICI treatment, including central nervous system and synchronous cancers, and identifies the dual roles of mutation burden and MS-indels in predicting sustained response to immunotherapy.

Author List

Das A, Sudhaman S, Morgenstern D, Coblentz A, Chung J, Stone SC, Alsafwani N, Liu ZA, Karsaneh OAA, Soleimani S, Ladany H, Chen D, Zatzman M, Cabric V, Nobre L, Bianchi V, Edwards M, Sambira Nahum LC, Ercan AB, Nabbi A, Constantini S, Dvir R, Yalon-Oren M, Campino GA, Caspi S, Larouche V, Reddy A, Osborn M, Mason G, Lindhorst S, Bronsema A, Magimairajan V, Opocher E, De Mola RL, Sabel M, Frojd C, Sumerauer D, Samuel D, Cole K, Chiaravalli S, Massimino M, Tomboc P, Ziegler DS, George B, Van Damme A, Hijiya N, Gass D, McGee RB, Mordechai O, Bowers DC, Laetsch TW, Lossos A, Blumenthal DT, Sarosiek T, Yen LY, Knipstein J, Bendel A, Hoffman LM, Luna-Fineman S, Zimmermann S, Scheers I, Nichols KE, Zapotocky M, Hansford JR, Maris JM, Dirks P, Taylor MD, Kulkarni AV, Shroff M, Tsang DS, Villani A, Xu W, Aronson M, Durno C, Shlien A, Malkin D, Getz G, Maruvka YE, Ohashi PS, Hawkins C, Pugh TJ, Bouffet E, Tabori U

Author

Ben George MD Professor in the Medicine department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Adolescent
Adult
B7-H1 Antigen
Biomarkers, Tumor
Child
DNA Repair
DNA Replication
Female
Germ-Line Mutation
Humans
Male
Neoplasms
Prospective Studies
Retrospective Studies
Survival Analysis
Tumor Microenvironment
Young Adult