Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. II. Use of detergents and antibodies. J Biol Chem 1987 Jul 15;262(20):9822-7

Date

07/15/1987

Pubmed ID

3597442

Scopus ID

2-s2.0-0023655368 (requires institutional sign-in at Scopus site)   120 Citations

Abstract

Exposure of rat liver mitochondrial membranes to octyl glucoside, Triton X-100, or Tween 20 solubilized an active and tetradecylglycidyl-CoA (TG-CoA)-insensitive carnitine palmitoyltransferase (presumed to be carnitine palmitoyltransferase II). The residual membranes after octyl glucoside or Triton X-100 treatment were devoid of all transferase activity. By contrast, Tween 20-extracted membranes were still rich in transferase; this was completely blocked by TG-CoA and thus was presumed to be carnitine palmitoyltransferase I. The residual carnitine palmitoyltransferase activity disappeared from the membranes upon subsequent addition of octyl glucoside or Triton X-100 and could not be recovered in the supernatant fraction. Antibody raised against purified rat liver transferase II (Mr 80,000) recognized only this protein in immunoblots from untreated liver mitochondrial membranes containing both transferases I and II. Tween 20-extracted membranes, which contained only transferase I, did not react with the antibody. Purified transferase II from skeletal muscle (also of Mr 80,000) was readily recognized by the antiserum, suggesting antigenic similarity with the liver enzyme. These and other studies on the effects of detergents on the mitochondrial [3H]TG-CoA binding protein provide further support for the model of carnitine palmitoyltransferase proposed in the preceding paper. They suggest that: 1) carnitine palmitoyltransferases I and II in rat liver are immunologically distinct proteins; 2) transferase I is more firmly anchored into its membrane environment than transferase II; 3) association of carnitine palmitoyltransferase I with a membrane component(s) is necessary for catalytic activity. While carnitine palmitoyltransferase I is a different protein in liver and muscle, it seems likely that both tissues share the same transferase II.

Author List

Woeltje KF, Kuwajima M, Foster DW, McGarry JD

Author

Keith F. Woeltje MD, PhD Associate Dean, Professor in the Medicine department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Acyltransferases
Animals
Antibodies
Antigen-Antibody Complex
Carnitine O-Palmitoyltransferase
Detergents
Intracellular Membranes
Male
Mitochondria, Liver
Rats
Rats, Inbred Strains
Submitochondrial Particles
Surface-Active Agents