Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Quantifying strategies to minimize aerosol dispersion in dental clinics. Exp Comput Multiph Flow 2023;5(3):290-303

Date

06/12/2023

Pubmed ID

37305074

Pubmed Central ID

PMC10042415

DOI

10.1007/s42757-022-0157-3

Scopus ID

2-s2.0-85150959894 (requires institutional sign-in at Scopus site)   5 Citations

Abstract

Many dental procedures are aerosol-generating and pose a risk for the spread of airborne diseases, including COVID-19. Several aerosol mitigation strategies are available to reduce aerosol dispersion in dental clinics, such as increasing room ventilation and using extra-oral suction devices and high-efficiency particulate air (HEPA) filtration units. However, many questions remain unanswered, including what the optimal device flow rate is and how long after a patient exits the room it is safe to start treatment of the next patient. This study used computational fluid dynamics (CFD) to quantify the effectiveness of room ventilation, an HEPA filtration unit, and two extra-oral suction devices to reduce aerosols in a dental clinic. Aerosol concentration was quantified as the particulate matter under 10 µm (PM10) using the particle size distribution generated during dental drilling. The simulations considered a 15 min procedure followed by a 30 min resting period. The efficiency of aerosol mitigation strategies was quantified by the scrubbing time, defined as the amount of time required to remove 95% of the aerosol released during the dental procedure. When no aerosol mitigation strategy was applied, PM10 reached 30 µg/m3 after 15 min of dental drilling, and then declined gradually to 0.2 µg/m3 at the end of the resting period. The scrubbing time decreased from 20 to 5 min when the room ventilation increased from 6.3 to 18 air changes per hour (ACH), and decreased from 10 to 1 min when the flow rate of the HEPA filtration unit increased from 8 to 20 ACH. The CFD simulations also predicted that the extra-oral suction devices would capture 100% of the particles emanating from the patient's mouth for device flow rates above 400 L/min. In summary, this study demonstrates that aerosol mitigation strategies can effectively reduce aerosol concentrations in dental clinics, which is expected to reduce the risk of spreading COVID-19 and other airborne diseases.

Author List

Dey S, Tunio M, Boryc LC, Hodgson BD, Garcia GJM

Author

Guilherme Garcia PhD Assistant Professor in the Biomedical Engineering department at Medical College of Wisconsin