Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Kidney Injury by Unilateral Ureteral Obstruction in Mice Lacks Sex Differences. Kidney Blood Press Res 2024;49(1):69-80

Date

01/08/2024

Pubmed ID

38185105

Pubmed Central ID

PMC10877550

DOI

10.1159/000535809

Scopus ID

2-s2.0-85184302998 (requires institutional sign-in at Scopus site)

Abstract

INTRODUCTION: Renal fibrosis is a critical event in the development and progression of chronic kidney disease (CKD), and it is considered the final common pathway for all types of CKD. The prevalence of CKD is higher in females; however, males have a greater prevalence of end-stage renal disease. In addition, low birth weight and low nephron number are associated with increased risk for CKD. This study examined the development and severity of unilateral ureter obstruction (UUO)-induced renal fibrosis in male and female wild-type (ROP +/+) and mutant (ROP Os/+) mice, a mouse model of low nephron number.

METHODS: Male and female ROP +/+ and ROP Os/+ mice were subjected to UUO, and kidney tissue was collected at the end of the 10-day experimental period. Kidney histological analysis and mRNA expression determined renal fibrosis, tubular injury, collagen deposition, extracellular matrix proteins, and immune cell infiltration.

RESULTS: Male and female UUO mice demonstrated marked renal injury, kidney fibrosis, and renal extracellular matrix production. Renal fibrosis and α-smooth muscle actin were increased to a similar degree in ROP +/+ and ROP Os/+ mice with UUO of either sex. There were also no sex differences in renal tubular cast formation or renal infiltration of macrophage in ROP +/+ and ROP Os/+ UUO mice. Interestingly, renal fibrosis and α-smooth muscle actin were 1.5-3-fold greater in UUO-ROP +/+ compared to UUO-ROP Os/+ mice. Renal inflammation phenotypes following UUO were also 30-45% greater in ROP +/+ compared to ROP Os/+ mice. Likewise, expression of extracellular matrix and renal fibrotic genes was greater in UUO-ROP +/+ mice compared to UUO-ROP Os/+ mice. In contrast to these findings, ROP Os/+ mice with UUO demonstrated glomerular hypertrophy with 50% greater glomerular tuft area compared to ROP +/+ with UUO. Glomerular hypertrophy was not sex-dependent in any of the genotypes of ROP mice. These findings provide evidence that low nephron number contributes to UUO-induced glomerular hypertrophy in ROP Os/+ mice but does not enhance renal fibrosis, inflammation, and renal tubular injury.

CONCLUSION: Taken together, we demonstrate that low nephron number contributes to enhanced glomerular hypertrophy but not kidney fibrosis and tubular injury. We also demonstrate that none of the changes caused by UUO was affected by sex in any of the ROP mice genotypes.

Author List

Goorani S, Khan AH, Mishra A, El-Meanawy A, Imig JD

Author

Ashraf El-Meanawy MD, PhD Professor in the Medicine department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Actins
Animals
Disease Models, Animal
Female
Fibrosis
Hypertrophy
Inflammation
Kidney
Male
Mice
Mice, Inbred C57BL
Renal Insufficiency, Chronic
Sex Characteristics
Ureteral Obstruction